首页> 外文OA文献 >Allowed N-glycosylation sites on the Kv1.2 potassium channel S1-S2 linker: implications for linker secondary structure and the glycosylation effect on channel function.
【2h】

Allowed N-glycosylation sites on the Kv1.2 potassium channel S1-S2 linker: implications for linker secondary structure and the glycosylation effect on channel function.

机译:Kv1.2钾通道S1-S2接头上允许的N-糖基化位点:对接头二级结构的影响以及糖基化对通道功能的影响。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

N-glycosylation is a post-translational modification that plays a role in the trafficking and/or function of some membrane proteins. We have shown previously that N-glycosylation affected the function of some Kv1 voltage-gated potassium (K+) channels [Watanabe, Wang, Sutachan, Zhu, Recio-Pinto and Thornhill (2003) J. Physiol. (Cambridge, U.K.) 550, 51-66]. Kv1 channel S1-S2 linkers vary in length but their N-glycosylation sites are at similar relative positions from the S1 or S2 membrane domains. In the present study, by a scanning mutagenesis approach, we determined the allowed N-glycosylation sites on the Kv1.2 S1-S2 linker, which has 39 amino acids, by engineering N-glycosylation sites and assaying for glycosylation, using their sensitivity to glycosidases. The middle section of the linker (54% of linker) was glycosylated at every position, whereas both end sections (46% of linker) near the S1 or S2 membrane domains were not. These findings suggested that the middle section of the S1-S2 linker was accessible to the endoplasmic reticulum glycotransferase at every position and was in the extracellular aqueous phase, and presumably in a flexible conformation. We speculate that the S1-S2 linker is mostly a coiled-loop structure and that the strict relative position of native glycosylation sites on these linkers may be involved in the mechanism underlying the functional effects of glycosylation on some Kv1 K+ channels. The S3-S4 linker, with 16 amino acids and no N-glycosylation site, was not glycosylated when an N-glycosylation site was added. However, an extended linker, with an added N-linked site, was glycosylated, which suggested that the native linker was not glycosylated due to its short length. Thus other ion channels or membrane proteins may also have a high glycosylation potential on a linker but yet have similarly positioned native N-glycosylation sites among isoforms. This may imply that the native position of the N-glycosylation site may be important if the carbohydrate tree plays a role in the folding, stability, trafficking and/or function of the protein.
机译:N-糖基化是翻译后修饰,在某些膜蛋白的运输和/或功能中起作用。先前我们已经表明,N-糖基化影响某些Kv1电压门控钾(K +)通道的功能[Watanabe,Wang,Sutachan,Zhu,Recio-Pinto和Thornhill(2003)J. Physiol。 (英国剑桥)550,51-66]。 Kv1通道S1-S2接头的长度不同,但它们的N-糖基化位点与S1或S2膜结构域的相对位置相似。在本研究中,通过扫描诱变方法,我们通过工程化N-糖基化位点并检测糖基化,利用它们的敏感性确定了Kv1.2 S1-S2接头上允许的N-糖基化位点,该接头具有39个氨基酸。糖苷酶。接头的中间部分(占接头的54%)在每个位置都被糖基化,而靠近S1或S2膜结构域的两个末端部分(占接头的46%)却没有糖基化。这些发现表明,S1-S2接头的中间部分在每个位置均可进入内质网糖基转移酶,并且处于细胞外水相中,并且可能呈柔性构象。我们推测,S1-S2接头主要是螺旋环结构,并且天然糖基化位点在这些接头上的严格相对位置可能与糖基化对某些Kv1 K +通道的功能作用的机制有关。当添加N-糖基化位点时,具有16个氨基酸且没有N-糖基化位点的S3-S4接头不被糖基化。然而,具有附加的N-连接位点的延伸接头被糖基化,这表明天然接头由于其短而未被糖基化。因此,其他离子通道或膜蛋白在接头上也可能具有较高的糖基化潜力,但在同工型之间仍具有相似的天然N-糖基化位点。这可能意味着如果碳水化合物树在蛋白质的折叠,稳定性,运输和/或功能中起作用,则N-糖基化位点的天然位置可能很重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号