首页> 外文OA文献 >Ab initio tensorial electronic friction for molecules on metal surfaces : nonadiabatic vibrational relaxation
【2h】

Ab initio tensorial electronic friction for molecules on metal surfaces : nonadiabatic vibrational relaxation

机译:金属表面上分子的从头算张量电子摩擦:非绝热振动弛豫

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Molecular adsorbates on metal surfaces exchange energy with substrate phonons and low-lying electron-hole pair excitations. In the limit of weak coupling, electron-hole pair excitations can be seen as exerting frictional forces on adsorbates that enhance energy transfer and facilitate vibrational relaxation or hot-electron-mediated chemistry. We have recently reported on the relevance of tensorial properties of electronic friction [M. Askerka et al., Phys. Rev. Lett. 116, 217601 (2016)] in dynamics at surfaces. Here we present the underlying implementation of tensorial electronic friction based on Kohn-Sham density functional theory for condensed phase and cluster systems. Using local atomic-orbital basis sets, we calculate nonadiabatic coupling matrix elements and evaluate the full electronic friction tensor in the Markov limit. Our approach is numerically stable and robust, as shown by a detailed convergence analysis. We furthermore benchmark the accuracy of our approach by calculation of vibrational relaxation rates and lifetimes for a number of diatomic molecules at metal surfaces. We find friction-induced mode-coupling between neighboring CO adsorbates on Cu(100) in a c(2×2) overlayer to be important for understanding experimental findings.
机译:金属表面上的分子吸附物与基底声子和低位电子-空穴对激发交换能量。在弱耦合的极限下,可以将电子-空穴对激发视为对吸附物施加摩擦力,从而增强能量传递并促进振动弛豫或热电子介导的化学反应。我们最近报道了电子摩擦张量特性的相关性[M. Askerka等,Phys。牧师116,217601(2016)]。在这里,我们介绍基于Kohn-Sham密度泛函理论的张量电子摩擦在凝聚相和团簇系统中的基本实现。使用局部原子轨道基集,我们计算了非绝热耦合矩阵元素,并评估了在马尔可夫极限中的完整电子摩擦张量。如详细的收敛分析所示,我们的方法在数值上稳定且可靠。我们还通过计算金属表面上许多双原子分子的振动弛豫率和寿命来确定我们方法的准确性。我们发现c(2×2)覆盖层中Cu(100)上相邻CO吸附物之间的摩擦诱导模式耦合对于理解实验结果很重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号