首页> 外文OA文献 >SYNTHESIS OF A STRUCTURALLY AND STEREOCHEMICALLY DIVERSE SPIROKETAL LIBRARY USING NOVEL STEREOSELECTIVE SPIROCYCLIZATIONS OF C1-SUBSTITUTED GLYCAL EPOXIDES
【2h】

SYNTHESIS OF A STRUCTURALLY AND STEREOCHEMICALLY DIVERSE SPIROKETAL LIBRARY USING NOVEL STEREOSELECTIVE SPIROCYCLIZATIONS OF C1-SUBSTITUTED GLYCAL EPOXIDES

机译:使用C1取代的糖类环氧化合物的新型立体选择性螺环化合成结构和立体化学多样的螺环库

摘要

A chemical genetic approach that uses small organic molecules to modulate protein function has the potential to overcome the limitations of classical genetic techniques for the study of biological processes. However, acquiring the features of broad applicability and specificity that are inherent to traditional genetics is still a challenge in chemical genetics. The impact that chemical genetics will have on our understanding of biological systems depends on a steady supply of biologically active small molecules with novel targets or improved specificity for known targets. Diversity-oriented synthesis (DOS) of small molecule libraries is an emerging method to identify new probes for biological studies and potential therapeutic lead compounds. We have explored the use of an approach that employs structural features commonly found in natural products as starting points for library design. Our library incorporates spiroketal motifs, but is otherwise stereochemically and structurally diverse to address a wide range of biological targets. Although many efforts have been made to synthesize members of the spiroketal class of natural products, traditional methods are not suitable for generating stereochemical diversity in DOS. Therefore, we have developed a strategy to create stereochemical diversity by using novel stereocontrolled spiroketalization reactions that provide access to both spiroketal stereoisomers from a common C1-substituted glycal epoxide precursor. Our route has allowed the synthesis of a library of diastereomeric spiroketals in which we control the stereochemical configuration not only at the quaternary spiroketal carbon, but also at multiple ring carbons. The library will ultimately be screened against a number of biological targets to evaluate the effectiveness of the design strategy, and potentially identify new biological probes or lead compounds for drug development.
机译:使用有机小分子调节蛋白质功能的化学遗传方法有可能克服传统遗传技术在生物学过程研究中的局限性。然而,获得传统遗传学固有的广泛适用性和特异性的特征仍然是化学遗传学中的挑战。化学遗传学对我们对生物系统的理解所产生的影响取决于稳定供应具有新靶标或对已知靶标的特异性提高的生物活性小分子。小分子文库的面向多样性的合成(DOS)是一种新兴的方法,可用于鉴定用于生物学研究的新探针和潜在的治疗先导化合物。我们已经探索了一种利用自然产品中常见的结构特征作为图书馆设计起点的方法。我们的文库包含了螺旋体基序,但是在立体化学和结构上是多种多样的,可以处理广泛的生物学靶标。尽管已经进行了许多努力来合成天然产物的灵酮类成员,但是传统方法不适合在DOS中产生立体化学多样性。因此,我们已经开发出一种通过使用新型立体控制的螺酮缩合反应来创建立体化学多样性的策略,该反应可从常见的C1取代的糖基环氧前体中获得两种螺缩酮的立体异构体。我们的路线已允许合成一个非对映体螺环酮化合物的文库,在该文库中,我们不仅控制季螺环酮碳,而且还控制多个环碳的立体化学构型。最终将针对许多生物学目标筛选该文库,以评估设计策略的有效性,并潜在地确定用于药物开发的新生物探针或先导化合物。

著录项

  • 作者

    Moilanen Sirkka;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号