首页> 外文OA文献 >Finite Element Simulations Of Fatigue Crack Stages In Aa 7075-T651 Microstructure
【2h】

Finite Element Simulations Of Fatigue Crack Stages In Aa 7075-T651 Microstructure

机译:Aa 7075-T651组织中疲劳裂纹阶段的有限元模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This dissertation is organized as three independent chapters. Each chapter is intended to be, or has been, submitted as a journal article and has a specific topic of focus. However, they all address the use of finite element simulation in modeling the initial stages of microstructurally small fatigue cracks (MSFCs) in aluminum alloy (AA) 7075-T651. A detailed abstract is provided at the beginning of each chapter. Fatigue experiments of AA 7075-T651 double edge-notched specimens have illustrated that a very small percentage of second-phase particles incubate a crack and lead to life-limiting cracks. Many of the incubating particles eventually nucleate cracks into the surrounding microstructure, but the number of cycles to nucleation varies widely among them. The goal here is to develop an understanding of the mechanics underpinning the observed stochasticity so that more reliable fatigue life predictions can be made. This is motivated by recent experimental observations and statistical analyses that suggest that microstructural hotspots - the combination of features that initiate life-limiting cracks - can not be determined solely from the statistics of microstructural features, e.g. particle diameter. However, the mechanics of MSFCs are complex and detailed finite element simulations are necessary for accurate modeling. The objective of the first chapter is to study the hypothesis that nucleation can be predicted by determining slip accumulation near the crack front. The main contribution is the development of five slip-based nucleation metrics to aid in the study of the effect of slip localization and accumulation on nucleation. Each of the five slip-based metrics is derived from an elastic-viscoplastic crystal plasticity formulation. Two non-local regularization approaches for the slip-based metrics near the crack front are studied because of local numerical divergence of slip fields upon mesh refinement. The limited validation conducted in the first chapter suggests that slip accumulation governs if nucleation will occur. Furthermore, crystallographic orientation, with respect to an incubated crack, is found to play a dominant role in the localization and accumulation of slip, and can also influence the direction of crack nucleation. The second chapter uses the five slip-based metrics and non-local regularization techniques in 11 finite element models of replicated microstructures under fatigue loading. Each model is generated by replicating grain and particle geometry where each grain's measured orientation is defined using an elastic-viscoplastic crystal plasticity model. A high slip localization and accumulation rate is found to be a necessary, but not sufficient, condition for nucleation from cracked particles. Furthermore, the simulation results elucidate that the local stress required to drive nucleation reduces as slip is accumulated. A semi-empirical model for the number of cycles required to nucleate a crack is found. The observed nucleation direction did not coalign with the directions of slip localization and accumulation, but were orthogonal to the computed local maximum tangential stress direction. This indicates that nucleation in this alloy is a stage-II process. A probabilistic approach to model the complex, stochastic mechanical interplay among the various microstructural features and the MSFC stages is presented in the third chapter. The developed incubation and nucleation models are used in a Monte Carlo simulation to filter out statistically insiginificant realizations of candidate hotspots. Validation of this process is analyzed by comparing the statistics of observed hotspot features with the statistics of the predicted hotspot features. The determination of MSFC hotspots provides a distribution of initial crack sizes and locations in a digital microstructure for subsequent simulations of propagation. Collectively, this dissertation constitutes an extensive study of the ability to enhance fatigue life modeling philosophies by incorporating mechanics-based modeling of the MSFC stages. The outcome of the incubation and nucleation filters is a prediction of the statistical variation in MSFC behavior, as dependent on the local microstructural features. The mechanics-based models developed herein could also be used to predict a deterministic set of incubation and nucleation events based on a particular instance of a microstructure, on a component-by-component basis. This approach would enhance the safe-life philosophy, where a worst-case scenario is enforced among a fleet of components. Lastly, useful information for the design of more fatigue-resistant materials is obtained using the modeling and simulation approaches presented.
机译:本论文分为三个独立的章节。每个章节都打算作为或已经作为期刊文章提交,并且有一个特定的主题。但是,它们都解决了在有限元模拟中对铝合金(AA)7075-T651中的微结构小疲劳裂纹(MSFC)的初始阶段进行建模的问题。每章开头均提供了详细的摘要。 AA 7075-T651双边缘试样的疲劳实验表明,很小比例的第二相颗粒会温育裂纹并导致寿命受限的裂纹。许多可孵化的颗粒最终将裂纹形核成周围的微结构,但成核的循环数在其中却相差很大。此处的目的是发展对所观察到的随机性基础的力学的理解,以便可以做出更可靠的疲劳寿命预测。这是由最近的实验观察和统计分析所激发的,这些结果表明,不能仅从微观结构特征的统计数据中确定微观结构热点-引发寿命极限裂纹的特征的组合。粒径。但是,MSFC的机制很复杂,因此对于精确建模而言,必须进行详细的有限元模拟。第一章的目的是研究这样的假设,即可以通过确定裂纹前沿附近的滑动累积来预测成核。主要贡献是开发了五个基于滑移的成核指标,以帮助研究滑移的局部化和堆积对成核的影响。五个基于滑动的度量均来自弹性-粘塑性晶体可塑性公式。由于网格细化时滑移场的局部数值差异,研究了两种在裂纹前沿附近基于滑移的度量的非局部正则化方法。在第一章中进行的有限验证表明,滑移累积控制着是否会发生成核。此外,发现相对于温育裂纹的晶体学取向在滑移的定位和积累中起主要作用,并且还可以影响裂纹成核的方向。第二章在疲劳载荷下,在11个复制微结构的有限元模型中使用了五种基于滑动的度量和非局部正则化技术。通过复制颗粒和颗粒的几何形状来生成每个模型,其中使用弹性粘塑性晶体可塑性模型定义每个颗粒的测量方向。发现高的滑移局部化和累积速率是从破裂的颗粒成核的必要条件,但不是充分条件。此外,仿真结果表明,随着滑移的累积,驱动成核所需的局部应力减小。找到了一个使裂纹成核所需的循环次数的半经验模型。观察到的成核方向与滑移定位和累积的方向不一致,但与计算的局部最大切向应力方向正交。这表明该合金中的成核是第二阶段过程。第三章介绍了一种概率方法,用于建模各种微观结构特征和MSFC阶段之间的复杂,随机的机械相互作用。在蒙特卡洛模拟中使用开发的孵化和成核模型,以过滤掉候选热点的统计上微不足道的实现。通过比较观察到的热点特征的统计数据与预测的热点特征的统计数据来分析此过程的有效性。 MSFC热点的确定在数字微观结构中提供了初始裂纹尺寸和位置的分布,用于后续的传播模拟。总的来说,本论文通过结合基于力学的MSFC阶段建模,对增强疲劳寿命建模原理的能力进行了广泛的研究。孵育和成核过滤器的结果是对MSFC行为统计变化的预测,具体取决于局部微结构特征。本文开发的基于力学的模型还可以用于基于逐个组件的微结构的特定实例来预测一组确定的孵化和成核事件。这种方法将增强安全生活理念,在这种情况下,最坏的情况要在一组组件之间实施。最后,使用提出的建模和仿真方法可以获得用于设计更耐疲劳的材料的有用信息。

著录项

  • 作者

    Hochhalter Jacob;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号