首页> 外文OA文献 >Geometrically Explicit Finite Element Modeling Of Aa7075-T651 Microstructure With Fatigue Cracks
【2h】

Geometrically Explicit Finite Element Modeling Of Aa7075-T651 Microstructure With Fatigue Cracks

机译:具有疲劳裂纹的Aa7075-T651微结构的几何显式有限元建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This dissertation is divided into three chapters, where each is an independent paper intended to be submitted as a refereed journal article. The main thrust of the research project overarching all three papers is to develop a high fidelity, geometrically explicit approach to finite element modeling fatigue at the microstructural length scale. Each paper is a study within this thrust, and the following is a sweeping overview of each study. More detailed abstracts for each paper are given at the beginning of each chapter. The paper in the first chapter is the fourth in a series of papers focused on implementing, calibrating, and validating criteria for simulating microstructurally small fatigue crack (MSFC) evolution, with high strain conditions in aluminum alloy (AA)7075-T651 as the proof-test application. MSFC evolution is divided into three stages: incubation, nucleation, and propagation. The specific focus of this paper is on the last stage, MSFC propagation, which is microstructure-governed fatigue crack growth through grains and/or along grain boundaries. Three simulated field metrics, crack tip displacement, crack-induced plastic slip localization, and maximum tangential stress ahead of the crack, previously investigated for prediction of nucleation, are investigated in this paper to determine their dependence on microstructural heterogeneities after nucleation. A total of 21 simulations are performed on a simplified baseline model of an AA7075-T651 microstructural region containing an MSFC. All three metrics are determined to be significantly dependent on the local microstructure immediately subsequent to nucleation. The particle spawning the crack and the orientation(s) of the grain(s) immediately surrounding the nucleated MSFC most influence the MSFC metrics. The paper in the second chapter focuses on the implementation of a computational framework that accurately and probabilistically models fatigue crack propagation at the microstructural scale, once again with high strain conditions in AA7075-T651 as the proof-test application. Toolsets are presented that generate and discretize statistically accurate microstructure geometry models and explicitly simulate the evolution of microstructurally small fatigue cracks. The concept is demonstrated through two model simulations and feasibility of the approach is critically evaluated. The paper in the third chapter is the fifth in the same series of papers described above for the first chapter. The focus of this paper is again on the last MSFC evolution stage, MSFC propagation. High resolution, micro-scale images of three propagating MSFC's are analyzed to determine dependencies of MSFC propagation on microstructural heterogeneities. Additionally, the three MSFC metrics studied in the first chapter - maximum tangential stresses, plastic slip localization, and crack displacements local to the crack front - are simulated in a finite element model that replicates an observed MSFC and the surrounding microstructure. The detailed observations and simulation reveal that MSFC propagation in AA7075T651 is highly dependent on the local microstructure, and MSFC behavior due to these dependencies can be predicted by the computed field metrics.
机译:本论文分为三章,每章均为独立论文,拟作为参考期刊论文提交。涵盖所有三篇论文的研究项目的主要重点是,开发一种高保真度的几何显式方法,以微观结构长度尺度对疲劳进行有限元建模。每篇论文都是在这一主旨范围内的一项研究,以下是每项研究的概述。每章的开头都提供了每篇论文的更详细的摘要。第一章的论文是系列论文中的第四篇,重点是实现,校准和验证用于模拟铝合金(AA)7075-T651高应变条件下的微观结构小疲劳裂纹(MSFC)演变的标准。测试应用程序。 MSFC的演化分为三个阶段:孵化,成核和繁殖。本文的重点是最后阶段,MSFC传播,即通过晶粒和/或沿晶界的微观结构控制的疲劳裂纹扩展。本文研究了三个模拟的场度量,即裂纹尖端位移,裂纹引起的塑性滑移局部化和裂纹前的最大切向应力(先前已对成核预测进行了研究),以确定它们对成核后对微观结构异质性的依赖性。在包含MSFC的AA7075-T651微结构区域的简化基线模型上总共进行了21次仿真。确定所有这三个度量均显着依赖于成核后的局部微观结构。产生裂纹的粒子和紧紧围绕有核MSFC的晶粒的方向对MSFC度量标准的影响最大。第二章中的论文着重于一个计算框架的实现,该计算框架可以在微观结构规模上准确,概率地模拟疲劳裂纹扩展,并在高应变条件下再次在AA7075-T651中作为证明测试应用程序。介绍了工具集,这些工具集可生成和离散化统计上准确的微结构几何模型,并显式模拟微结构小的疲劳裂纹的演化。通过两个模型仿真证明了该概念,并对该方法的可行性进行了严格评估。第三章中的论文是与第一章相同的系列论文中的第五篇。本文的重点还是在最后一个MSFC演进阶段,即MSFC传播。分析了三种正在传播的MSFC的高分辨率,微尺度图像,以确定MSFC传播对微结构异质性的依赖性。此外,在第一章中研究的三个MSFC指标-最大切向应力,塑性滑移局部化和裂纹前沿局部的裂纹位移-在一个有限元模型中进行了模拟,该模型复制了观察到的MSFC和周围的微观结构。详细的观察和模拟显示,AA7075T651中的MSFC传播高度依赖于本地微结构,并且由于这些依赖关系而导致的MSFC行为可以通过计算得出的现场指标进行预测。

著录项

  • 作者

    Veilleux Michael;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号