首页> 外文OA文献 >Functionalized Electrospun Nanofibers In Microfluidic Bioanalytical Systems
【2h】

Functionalized Electrospun Nanofibers In Microfluidic Bioanalytical Systems

机译:微流控生物分析系统中的功能化电纺纳米纤维

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biosensors detect target analytes through specific binding with biological recognition elements such as nucleic acids, enzymes, and antibodies. Many labs are working to create inexpensive and portable miniaturized sensors that allow for rapid sample analysis and low reagent consumption in order to increase biosensor accessibility in rural areas and third world countries. Lab-on-a-chip devices aim to incorporate sample preparation and analyte detection into one device in order to create self-contained sensors that can be used in rural areas and third world countries where laboratory equipment may not be available. Often, these devices incorporate microfluidics in order to shorten reaction times, reduce handling of hazardous samples, and take advantage of laminar flow [1]. However, while several successful lab-on-achip devices have been developed, incorporating sample preparation and analyte detection within one device is still a key challenge in the design of many biosensors. Sample preparation is extremely important for miniaturized sensors, which have a low tolerance for sample impurities and particulates [1]. In addition, significant sample concentration is often required to reduce sample volumes to the nL to mL range used in miniaturized sensors. This research aims to address the need for sample preparation within lab-on-a-chip systems through the use of functionalized electrospun nanofibers within polymer microfluidic devices. Electrospinning is a fiber formation process that uses electrical forces to form fibers with diameters on the order of 100 nm from polymer spinning dopes [2, 3]. The non-woven fiber mats formed during electrospinning have extremely high surface area to volume ratios, and can be used to increase the sensitivity and binding capacity of biosensors without increasing their size. Additionally, the fibers can be functionalized through the incorporation of nano and microscale materials within a polymer spinning dope. In this work, positively and negatively charged v nanofibers were created through the incorporation of hexadimethrine bromide (polybrene) and poly(maleic anhydride) (Poly(MA)) within a poly(vinyl alcohol) spinning dope. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed the successful incorporation of polybrene and poly(MA) into the nanofibers. Gold microelectrodes were patterned on poly(methyl methacrylate) (PMMA) to facilitate the incorporation of nanofibers within microfluidic devices. The gold microelectrodes served as grounded collector plates during electrospinning and produced well-aligned nanofiber mats. Microchannels 1 mm wide and 52 [MICRO SIGN]m deep were imprinted into PMMA through hot embossing with a copper template. PMMA pieces embossed with microchannels were bonded to PMMA pieces with gold microelectrodes and nanofibers using UV-assisted thermal bonding. Positively charged polybrene-modified nanofibers were shown to successfully filter negatively charged fluorescent liposomes out of a HEPES-sucrose-saline buffer, while negatively charged poly(MA)-modified nanofibers were shown to repel the liposomes. The effect of nanofiber mat thickness on liposome retention was studied using the z-scan function of a Leica confocal microscope. It was determined that positively charged nanofibers exhibited optimal liposome retention at thicknesses of 20 [MICRO SIGN]m and above. Negatively charged nanofiber mats over 40 [MICRO SIGN]m thick retained liposomes due to their small pore size despite their surface charge. Finally, it was demonstrated that a HEPES-sucrose-saline solution of pH 8.5 could be used to change the charge of the positively charged polybrene nanofibers and allow for the release of previously bound liposomes. The results of this study can be used to design lab-on-a-chip devices capable of performing all sample preparation and analyte detection in one miniaturized microfluidic sensor. vi In addition, other nanofiber surface chemistries can be studied to create more specific sample filtration and allow for immobilization of biological recognition element. vii
机译:生物传感器通过与生物识别元件(例如核酸,酶和抗体)的特异性结合来检测目标分析物。许多实验室正在努力制造价格低廉且便携式的微型传感器,以实现快速的样品分析和较低的试剂消耗,从而增加农村地区和第三世界国家对生物传感器的可及性。片上实验室设备旨在将样品制备和分析物检测整合到一个设备中,以创建能够在无法使用实验室设备的农村地区和第三世界国家使用的独立传感器。通常,这些设备采用微流体技术,以缩短反应时间,减少对危险样品的处理并利用层流[1]。然而,尽管已经开发了几种成功的片上实验室设备,但将样品制备和分析物检测整合到一个设备中仍然是许多生物传感器设计中的关键挑战。样品制备对于小型传感器极为重要,因为这些传感器对样品杂质和颗粒的耐受性较低[1]。此外,通常需要大量的样品浓度才能将样品量减少到微型传感器中使用的nL到mL范围。这项研究旨在通过在聚合物微流控设备中使用功能化的电纺纳米纤维来满足芯片实验室系统中样品制备的需求。电纺丝是一种纤维形成过程,它利用电力从聚合物纺丝原液中形成直径约为100 nm的纤维[2,3]。在静电纺丝过程中形成的非织造纤维垫具有极高的表面积与体积之比,可用于增加生物传感器的灵敏度和结合能力,而无需增加其尺寸。另外,可以通过在聚合物纺丝原液中掺入纳米和微米级材料来使纤维功能化。在这项工作中,通过在聚乙烯醇纺丝原液中掺入溴化六二甲基溴(聚乙烯)和聚(马来酸酐)(聚(MA)),产生带正电荷和带负电荷的v纳米纤维。傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)证实了将聚乙烯和聚(MA)成功掺入纳米纤维中。金微电极在聚甲基丙烯酸甲酯(PMMA)上进行构图,以利于将纳米纤维掺入微流控设备中。金微电极在静电纺丝过程中用作接地的集电极板,并产生了排列良好的纳米纤维垫。通过使用铜模板进行热压花,将1mm宽,52 [MICRO SIGN] m深的微通道压印到PMMA中。压印有微通道的PMMA片通过紫外线辅助热粘合,通过金微电极和纳米纤维与PMMA片粘合。带正电的聚乙烯修饰的纳米纤维被证明可以成功地从HEPES-蔗糖-盐水缓冲液中滤除带负电的荧光脂质体,而带负电的聚MA修饰的纳米纤维则可以排斥脂质体。使用徕卡共聚焦显微镜的z扫描功能研究了纳米纤维垫厚度对脂质体保留的影响。已确定带正电的纳米纤维在厚度为20 [MICRO SIGN] m及以上时表现出最佳的脂质体保留能力。尽管表面电荷小,但由于孔径小,带负电荷的纳米纤维垫保留了40 [MICRO SIGN] m厚的脂质体。最后,已证明pH 8.5的HEPES-蔗糖-盐溶液可用于改变带正电的聚丙烯纳米纤维的电荷,并释放先前结合的脂质体。这项研究的结果可用于设计芯片实验室设备,这些设备能够在一个微型微流体传感器中执行所有样品制备和分析物检测。 vi此外,可以研究其他纳米纤维表面化学,以创建更特定的样品过滤并允许固定生物识别元件。七

著录项

  • 作者

    Matlock-Colangelo Lauren;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号