首页> 外文OA文献 >An Investigation into the Solid State Properties of Olanzapine and Paroxetine HCl and their Solid Dispersion Systems
【2h】

An Investigation into the Solid State Properties of Olanzapine and Paroxetine HCl and their Solid Dispersion Systems

机译:奥氮平和帕罗西汀盐酸盐的固态特性及其固体分散体系的研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Physical characterisation of pharmaceutical solids is an integral aspect of the drug development process and has attracted increased attention over the past decades. Each active pharmaceutical ingredient (API), may exist in different crystalline forms (polymorphs), incorporate water in their structure (pseudopolymorphs) or be converted, intentionally or not, to an amorphous state. As consequence of all this variety of forms, a full toolbox of characterisation techniques is nowadays available, combining high resolution thermoanalytical techniques with highly precise diffraction methods and advanced computational resources.The work presented in this thesis aimed to provide an in-depth understanding of the physicochemical properties of single drug molecules (olanzapine and paroxetine HCl) and final formulated systems in varying physical states including different crystalline entities and amorphous systems. In this work, a combination of thermal (standard differential scanning calorimetry (DSC), modulated temperature DSC (MTDSC), thermogravimetric analysis (TGA) and hot stage microscopy (HSM)), diffraction (X-ray powder diffraction (XRPD) combined, in some studies, with variable humidity (VH) or temperature (VT)) and spectroscopic techniques (attenuated total reflectance–Fourier transform infrared (ATR-FTIR)) were extensively used. Dynamic vapour sorption (DVS), Karl Fischer titration (KFT) and scanning electron microscopy (SEM) were as well of great importance. Dissolution performance and physical stability studies were also evaluated.At first, a thorough investigation into the solid state of paroxetine HCl was performed. Aspects such as the interaction with water and the interconversion between the two crystalline forms, Form I and II, were fully explored. This enabled to successfully clarifying the nature, location and bonding strength of the water molecules in the crystalline structure of paroxetine HCl Form II (Chapter 3). These findings allowed proper recognition of Form II as a non-stoichiometric hydrate with unusual behaviour, and challenges the previous designation as an anhydrous form with a hygroscopic nature. On the other hand, the specific conditions that led to the dehydration of Form I were fully investigated (Chapter 4). The dehydration of Form I was found to require both ultra-dry environment and high temperatures. As a consequence of this process a new anhydrous form of paroxetine HCl has been identified.After this structural characterisation, studies were conducted on the conversion of paroxetine HCl to an amorphous state, either alone (Chapter 5) or molecularly dispersed in polyvinylpyrrolidone vinyl-acetate (PVPVA, Chapter 6). Chapter 5 provided a detailed thermal characterisation using thermodynamic and kinetic parameters of amorphous paroxetine HCl prepared via melt quenching method. The results obtained were then correlated with the stability of this form over storage. In Chapter 6, parameters such as the initial hydration state of the drug (paroxetine Forms I and II) and the methodology used (spray drying (SD) and hot melt extrusion (HME)) were found not only to influence the dissolution rate of the prepared systems but also its physical stability. Finally, the acquired knowledge in the preparation of solid dispersion systems was applied to a Biopharmaceutical Classification System (BCS) Class 2 drug (olanzapine, OLZ) using HME as the selected technology and considering the influence of different polymeric carriers (Chapter 7). This study showed an interesting interplay between the extrusion temperature, drug loading, drug physical state and polymer chemistry that can be further applied to other poorly soluble APIs.To conclude, the research carried out and detailed within this thesis aims to contribute to a better understanding of the complex solid state characterisation of pharmaceutical drugs and formulated systems prepared via solid dispersion methods. To the end, this work has identified several issues and possible areas for future research in the pharmaceutical field.
机译:药物固体的物理表征是药物开发过程不可或缺的一部分,并且在过去几十年中引起了越来越多的关注。每种活性药物成分(API)可能以不同的结晶形式(多晶型物)存在,在其结构中掺入水(伪多晶型物),或者有意或无意地转化为非晶态。由于所有这些形式的多样性,如今已经有了一个完整的表征技术工具箱,将高分辨率的热分析技术与高精度的衍射方法和先进的计算资源结合在一起。单一药物分子(奥氮平和帕罗西汀盐酸盐)和最终配制系统在不同物理状态下的物理化学特性,包括不同的晶体实体和无定形系统。在这项工作中,结合了热学(标准差示扫描量热法(DSC),调制温度DSC(MTDSC),热重分析(TGA)和热台显微镜(HSM)),衍射(X射线粉末衍射(XRPD)),在一些研究中,广泛使用了可变湿度(VH)或温度(VT)和光谱技术(衰减的全反射率-傅立叶变换红外(ATR-FTIR))。动态蒸气吸附(DVS),卡尔·费休滴定法(KFT)和扫描电子显微镜(SEM)也很重要。还评估了溶解性能和物理稳定性研究。首先,对帕罗西汀盐酸盐的固态进行了彻底的研究。充分探讨了诸如与水的相互作用以及两种结晶形式I和II之间的相互转化等方面。这使得能够成功阐明帕罗西汀盐酸盐晶型II的晶体结构中水分子的性质,位置和结合强度(第3章)。这些发现允许形式II正确地识别为具有非常规行为的非化学计量水合物,并挑战了先前指定为具有吸湿性的无水形式。另一方面,对导致晶型I脱水的具体条件进行了充分研究(第4章)。发现形式I的脱水需要超干环境和高温。作为该过程的结果,已鉴定出一种新的无水形式的帕罗西汀HCl。在对该结构进行表征后,研究了将帕罗西汀HCl转化为无定形状态的过程(第5章)或将其分子分散在聚乙烯吡咯烷酮乙酸乙烯酯中(PVPVA,第6章)。第5章使用熔体淬火法制备的非晶态帕罗西汀盐酸盐的热力学和动力学参数提供了详细的热表征。然后将获得的结果与该形式在储存中的稳定性相关。在第6章中,发现诸如药物的初始水合状态(帕罗西汀形式I和II)和所用方法(喷雾干燥(SD)和热熔挤出(HME))等参数不仅影响药物的溶出速率。准备好的系统,还有其物理稳定性。最后,将在制备固体分散体系统中获得的知识应用于使用HME作为选定技术并考虑到不同聚合物载体的影响的生物制药分类系统(BCS)2类药物(奥氮平,OLZ)(第7章)。这项研究显示了挤出温度,载药量,药物物理状态和聚合物化学之间有趣的相互作用,可以进一步应用于其他难溶性API。总而言之,本文中进行的研究和详细研究旨在有助于更好地理解药物的复杂固态表征和通过固体分散方法制备的配制系统最终,这项工作确定了几个问题以及在医药领域未来研究的可能领域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号