首页> 外文OA文献 >Shadow Imaging of Geosynchronous Satellites
【2h】

Shadow Imaging of Geosynchronous Satellites

机译:地球同步卫星的阴影成像

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Geosynchronous (GEO) satellites are essential for modern communication networks. If communication to a GEO satellite is lost and a malfunction occurs upon orbit insertion such as a solar panel not deploying there is no direct way to observe it from Earth. Due to the GEO orbit distance of ~36,000 km from Earth's surface, the Rayleigh criteria dictates that a 14 m telescope is required to conventionally image a satellite with spatial resolution down to 1 m using visible light. Furthermore, a telescope larger than 30 m is required under ideal conditions to obtain spatial resolution down to 0.4 m. This dissertation evaluates a method for obtaining high spatial resolution images of GEO satellites from an Earth based system by measuring the irradiance distribution on the ground resulting from the occultation of the satellite passing in front of a star. The representative size of a GEO satellite combined with the orbital distance results in the ground shadow being consistent with a Fresnel diffraction pattern when observed at visible wavelengths. A measurement of the ground shadow irradiance is used as an amplitude constraint in a Gerchberg-Saxton phase retrieval algorithm that produces a reconstruction of the satellite's 2D transmission function which is analogous to a reverse contrast image of the satellite. The advantage of shadow imaging is that a terrestrial based redundant set of linearly distributed inexpensive small telescopes, each coupled to high speed detectors, is a more effective resolved imaging system for GEO satellites than a very large telescope under ideal conditions. Modeling and simulation efforts indicate sub-meter spatial resolution can be readily achieved using collection apertures of less than 1 meter in diameter. A mathematical basis is established for the treatment of the physical phenomena involved in the shadow imaging process. This includes the source star brightness and angular extent, and the diffraction of starlight from the satellite. Atmospheric effects including signal attenuation, refraction/dispersion, and turbulence are also applied to the model. The light collection and physical measurement process using highly sensitive geiger-mode avalanche photo-diode (GM-APD) detectors is described in detail. A simulation of the end-to-end shadow imaging process is constructed and then utilized to quantify the spatial resolution limits based on source star, environmental, observational, collection, measurement, and image reconstruction parameters.
机译:地球同步(GEO)卫星对于现代通信网络至关重要。如果与GEO卫星的通信丢失,并且在插入轨道时发生故障,例如太阳能电池板未部署,则无法直接从地球上进行观察。由于距地球表面约36,000 km的GEO轨道距离,瑞利标准规定,通常需要14 m望远镜才能使用可见光对空间分辨率低至1 m的卫星进行常规成像。此外,在理想条件下需要大于30 m的望远镜才能获得低至0.4 m的空间分辨率。本论文评估了一种方法,该方法通过测量由于掩星经过恒星前方而造成的地面辐照度分布,来从基于地球的系统中获取GEO卫星的高分辨率图像。当在可见光波长下观察时,GEO卫星的代表性尺寸与轨道距离相结合会导致地面阴影与菲涅耳衍射图一致。地面阴影辐照度的测量在Gerchberg-Saxton相位检索算法中用作幅度约束,该算法产生了卫星2D传输函数的重构,类似于卫星的反差图像。阴影成像的优势在于,在理想条件下,与超大型望远镜相比,基于地面的冗余组线性分布的廉价小型望远镜(每组均与高速检测器相连)是对GEO卫星更有效的分辨成像系统。建模和仿真工作表明,使用直径小于1米的收集孔可以轻松实现亚米级的空间分辨率。建立了处理阴影成像过程中涉及的物理现象的数学基础。这包括源恒星的亮度和角度范围,以及来自卫星的星光衍射。包括信号衰减,折射/扩散和湍流在内的大气效应也被应用到该模型中。详细介绍了使用高灵敏度盖革模式雪崩光电二极管(GM-APD)检测器进行的光收集和物理测量过程。构造了端到端阴影成像过程的模拟,然后基于源星,环境,观测,收集,测量和图像重建参数来量化空间分辨率极限。

著录项

  • 作者

    Douglas Dennis Michael;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号