首页> 外文OA文献 >Processing High Purity Zirconium Diboride Ultra-High Temperature Ceramics: Small-to-Large Scale Processing
【2h】

Processing High Purity Zirconium Diboride Ultra-High Temperature Ceramics: Small-to-Large Scale Processing

机译:加工高纯度二硼化锆超高温陶瓷:从小规模到大规模加工

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Next generation aerospace vehicles require thermal protection system (TPS) materials that are capable of withstanding the extreme aerothermal environment during hypersonic flight (>Mach 5 [>1700 m/s]). Ultra-high temperature ceramics (UHTC) such as zirconium diboride (ZrB₂) are candidate TPS materials due to their high-temperature thermal and mechanical properties and are often the basis for advanced composites for enhanced oxidation resistance. However, ZrB₂ matrix impurities in the form of boron trioxide (B₂O₃) and zirconium dioxide (ZrO₂) limit the high-temperature capabilities. Electric based sintering techniques, such as spark plasma sintering (SPS), that use joule heating have become the preferred densification method to process advanced ceramics due to its ability to produce high density parts with reduced densification times and limit grain growth. This study focuses on a combined experimental and thermodynamic assisted processing approach to enhance powder purity through a carbo- and borocarbo-thermal reduction of oxides using carbon (C) and boron carbide (B₄C). The amount of oxides on the powder surface are measured, the amount of additive required to remove oxides is calculated, and processing conditions (temperature, pressure, environment) are controlled to promote favorable thermodynamic reactions both during thermal processing in a tube furnace and SPS. Untreated ZrB₂ contains 0.18 wt%O after SPS. Additions of 0.75 wt%C is found to reduce powder surface oxides to 0.12 wt%O. A preliminary Zr-C-O computational thermodynamic model shows limited efficiency of carbon additions to completely remove oxygen due to the solubility of oxygen in zirconium carbide (ZrC) forming a zirconium oxycarbide (ZrCₓOᵧ). Scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM) with atomic scale elemental spectroscopy shows reduced oxygen content with amorphous Zr-B oxides and discreet ZrO₂ particle impurities in the microstructure. Processing ZrB₂ with minimal additions of B₄C (0.25 wt%) produces high purity parts after SPS with only 0.06 wt%O. STEM identifies unique “trash collector” oxides composed of manufacturer powder impurities of calcium, silver, and yttrium. A preliminary Zr-B-C-O thermodynamic model is used to show the potential reaction paths using B₄C that promotes oxide removal to produce high-purity ZrB₂ with fine grains (3.3 u1d707m) and superior mechanical properties (flexural strength of 660MPa) than the current state-of-the-art ZrB₂ ceramics. Due to the desirable properties produced using SPS, there is growing interest to advance processing techniques from lab-scale (20 mm discs) to large-scale (>100 mm). The advancement of SPS technologies has been stunted due to the limited power and load delivery of lab-scale furnaces. We use a large scale direct current sintering furnace (DCS) to address the challenges of producing industrially relevant sized parts. However, current-assisted sintering techniques, like SPS and DCS, are highly dependent on tooling resistances and the electrical conductivity of the sample, which influences the part uniformity through localized heating spots that are strongly dependent on the current flow path. We develop a coupled thermal-electrical finite element analysis model to investigate the development and effects of tooling and current density manipulation on an electrical conductor (ZrB₂) and an electrical insulator, silicon nitride (Si₃N₄), at the steady-state where material properties, temperature gradients and current/voltage input are constant. The model is built based on experimentally measured temperature gradients in the tooling for 20 mm discs and validated by producing 30 mm discs with similar temperature gradients and grain size uniformity across the part. The model aids in developing tooling to manipulate localize current density in specific regions to produce uniform 100 mm discs of ZrB₂ and Si₃N₄.
机译:下一代航空航天飞行器需要热防护系统(TPS)材料,该材料必须能够在超音速飞行过程中承受极端的空气热环境(> 5马赫[> 1700 m / s])。超高温陶瓷(UHTC),例如二硼化锆(ZrB 2),由于其高温热和机械性能而成为TPS候选材料,并且通常是增强抗氧化性能的高级复合材料的基础。但是,三氧化硼(B 2 O 3)和二氧化锆(ZrO 2)形式的ZrB 2基体杂质限制了高温能力。使用焦耳加热的基于电的烧结技术,例如火花等离子体烧结(SPS),由于其能够生产具有减少的致密化时间并限制晶粒生长的高密度零件而成为加工高级陶瓷的首选致密化方法。这项研究的重点是结合实验和热力学辅助处理方法,通过使用碳(C)和碳化硼(B₄C)的碳和硼碳热还原氧化物来提高粉末纯度。测量粉末表面上的氧化物的量,计算除去氧化物所需的添加剂的量,并控制加工条件(温度,压力,环境)以促进在管式炉和SPS热处理过程中有利的热力学反应。 SPS后未处理的ZrB 2含有0.18wt%的O。发现添加0.75重量%的C将粉末表面氧化物还原至0.12重量%的O。初步的Zr-C-O计算热力学模型表明,由于氧在碳化锆(ZrC)中形成氧碳化锆(ZrCₓO3)的溶解度,碳添加以完全去除氧的效率有限。带有原子尺度元素光谱的扫描电子显微镜(SEM)和扫描透射电子显微镜(STEM)显示,在组织中,非晶态的Zr-B氧化物和离散的ZrO 2颗粒杂质使氧含量降低。用最少的B afterC(0.25 wt%)加工ZrB 2可在SPS后仅以0.06 wt%的O产生高纯度的零件。 STEM可识别由制造商的钙,银和钇粉末杂质组成的独特“垃圾收集器”氧化物。初步的Zr-BCO热力学模型用于显示使用B₄C的潜在反应路径,B₄C可以促进氧化物的去除,从而生产出具有比当前状态更细的晶粒(3.3微米)和优异的机械性能(弯曲强度为660MPa)的高纯度ZrB 2。最先进的ZrB 2陶瓷。由于使用SPS产生的理想特性,人们越来越关注将处理技术从实验室规模(20 mm光盘)扩展到大规模(> 100 mm)。由于实验室规模的熔炉有限的功率和负荷传递,SPS技术的发展受到了阻碍。我们使用大型直流烧结炉(DCS)来解决生产与工业相关的尺寸零件的挑战。但是,电流辅助烧结技术(例如SPS和DCS)高度依赖于加工电阻和样品的电导率,这通过强烈依赖于电流流动路径的局部加热点影响零件的均匀性。我们开发了一个热电耦合有限元分析模型,以研究工具和电流密度操纵在稳态下的电导体(ZrB 2)和电绝缘体氮化硅(Si₃Nthe)的发展及其影响,温度梯度和电流/电压输入是恒定的。该模型是基于在20毫米圆盘的模具中实验测量的温度梯度建立的,并通过生产30毫米的圆盘来验证该模型,它们在零件上具有相似的温度梯度和晶粒尺寸均匀性。该模型有助于开发工具来操纵特定区域的局部电流密度,以产生均匀的100mm ZrB 2和Si 3 N 4盘。

著录项

  • 作者

    Pham David;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号