首页> 外文OA文献 >CHLOROPHYLL PHOTOCHEMISTRY IN LIPOSOMES: TRIPLET STATE QUENCHING AND ELECTRON TRANSFER TO QUINONE.
【2h】

CHLOROPHYLL PHOTOCHEMISTRY IN LIPOSOMES: TRIPLET STATE QUENCHING AND ELECTRON TRANSFER TO QUINONE.

机译:脂质体中的叶绿素光化学:三重态态猝灭和电子转移至醌。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Liposomes incorporating chlorophyll (Chl) have been used as a model system to study various aspects of photosynthesis (such as Chl photooxidation and acceptor reduction). Laser flash photolysis studies of this system have demonstrated that the Chl triplet state (Chl(t)) can transfer an electron to acceptors such as quinones, resulting in the formation of the Chl cation radical (Chl⁺.) and the semiquinone anion radical (Q¯.). Quenching of Chl(t) by quinones in liposomes is diffusion-controlled. The quenching rate is dependent upon bilayer viscosity. Chl(t) lifetimes in the absence of quinones also reflect bilayer viscosity. Radical decay occurs by reverse electron transfer. Although the decay is non-exponential, the decay rate is independent of laser intensity. This is presumably because radical pairs once formed do not become independent of one another and back react in a manner which can be likened to geminate recombination. The non-exponentiality is due to electron exchange between quinone molecules and the heterogeneity in the distribution of molecules among the vesicles. This electron exchange is also manifested in the radical formation process. At high quinone concentration the radical yield increases with quinone concentration in non-linear fashion with respect to the amount of triplet quenched. This positive cooperative effect is interpreted in terms of high quinone concentrations increasing the efficiency of radical production by providing a pathway (via electron hopping) for removal of the electron from the site of initial electron transfer. When ubiquinone is used, only a single fast decay is observed. However, when quinones which can partition between the aqueous and lipid phases are used, radical decay occurs via a fast and a slow process. This is interpreted in terms of electron transfers from Q¯. within the bilayer to Q at the bilayer-water interface which results in a stabilization of the electron transfer products and a slowly-decaying radical. The rate of this slow decay process is also quinone concentration dependent, which is a consequence of a facilitation of electron return to Chl⁺. by Q molecules within the bilayer via an electron hopping mechanism. That such a mechanism is, in fact, operative in radical production is shown also by the observation of electron transfer from UQ¯. to BQ molecules.
机译:掺入叶绿素(Chl)的脂质体已被用作模型系统来研究光合作用的各个方面(例如Chl光氧化和受体还原)。此系统的激光闪光光解研究表明,Chl三重态(Chl(t))可以将电子转移至受体,例如醌,导致Chl阳离子自由基(Chl⁺。)和半醌阴离子自由基(问)。脂质体中醌对Chl(t)的猝灭是受扩散控制的。淬灭速率取决于双层粘度。不存在醌的Chl(t)寿命也反映了双层粘度。自由基的衰减是通过反向电子转移发生的。尽管衰减是非指数的,但衰减速率与激光强度无关。据推测,这是因为一旦形成的自由基对就不会彼此独立,而是以可以被认为可以进行重组的方式发生反应。非指数性归因于醌分子之间的电子交换和分子在囊泡之间的分布的异质性。这种电子交换也表现在自由基形成过程中。在高醌浓度下,相对于淬灭的三联体的量,自由基产率随醌浓度以非线性方式增加。这种积极的协同作用可以通过高醌浓度来解释,该浓度通过提供从电子转移初始位置去除电子的途径(通过电子跳跃)提高了自由基产生的效率。当使用泛醌时,仅观察到一个快速衰减。但是,当使用可以在水相和脂质相之间分配的醌时,自由基的分解会通过快速和缓慢的过程发生。这是根据从Q的电子转移来解释的。在双层中,在双层-水界面处的Q达到Q,这导致电子转移产物的稳定和自由基的缓慢衰减。该缓慢衰变过程的速率也取决于醌浓度,这是促进电子返回到Chl 3的结果。通过双层电子中的Q分子通过电子跳跃机制产生实际上,这种机制在自由基产生中起作用,这也通过观察来自UQ′的电子转移来表明。 BQ分子。

著录项

  • 作者

    HURLEY JOHN KEVIN.;

  • 作者单位
  • 年度 1982
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号