首页> 外文学位 >The non-mass-dependent isotopic composition of ozone and its photochemical transfer to stratospheric CO2: Unexpected variations in stratospheric CO2 and the unusual role of collisional quenching efficiencies in photochemistry experiments and kinetics modeling.
【24h】

The non-mass-dependent isotopic composition of ozone and its photochemical transfer to stratospheric CO2: Unexpected variations in stratospheric CO2 and the unusual role of collisional quenching efficiencies in photochemistry experiments and kinetics modeling.

机译:臭氧的非质量依赖性同位素组成及其向平流层CO2的光化学转移:平流层CO2中的意外变化以及碰撞猝灭效率在光化学实验和动力学建模中的异常作用。

获取原文
获取原文并翻译 | 示例

摘要

Atypically large and non-mass-dependent kinetic isotope effects (KIEs) in the three-body ozone formation reaction, O(3P) + O 2 → O3* + M → O3 + M*, lead to a non-mass-dependent oxygen isotopic composition for O3 observed in both the laboratory and the atmosphere. Theoretical work has suggested that a dynamically-driven, quantum symmetry isotope effect in the lifetime of the excited ozone complex O3* or its collisional stabilization is responsible, although the underlying chemical physics has remained mysterious. Stratospheric CO 2 also has a non-mass-dependent oxygen isotopic composition that is thought to be transferred from ozone by photolysis to form O(1D) followed by the O(1D) + CO2 isotope exchange reaction. However, the non-mass-dependent isotopic compositions of CO2 measured either in UV photochemistry experiments or in stratospheric air samples could not easily be explained by isotope effects in ozone formation, leading some to claim that additional anomalous isotope effects must exist in ozone photolysis or in the O(1D) + CO2 isotope exchange reaction. In the research results presented here, I detail several significant advances in the understanding of the non-mass-dependent isotopic composition of ozone and its transfer to stratospheric CO2. I made these advances through new measurements and kinetics modeling of the isotopic composition of O 3 and CO2 in photochemistry experiments in which mixtures of O2, CO2, and other bath gases were irradiated with UV light from a mercury lamp as well as comparisons of these results with the latitude, altitude, and seasonal dependence of the isotopic composition of stratospheric CO2.;For application to the non-mass-dependent isotopic composition of stratospheric CO2, I show using a kinetics model that the non-mass-dependent isotope effects in ozone formation alone can quantitatively account for the non-mass-dependent isotopic composition of CO2 in laboratory measurements of UV-irradiated mixtures of O2 and CO2 at atmospheric mixing ratios. I then used the kinetics model to provide a conceptual framework for understanding the significant differences in the non-mass-dependent isotopic composition of CO2 between the laboratory experiments and the stratosphere and between different regions of the stratosphere that I discovered in the atmospheric measurements. Based on model sensitivities to the temperature dependence of the ozone KIEs and mass-dependent isotope effects in ozone photolysis, differences in temperature and in the relative rate of ozone photolysis are found to be the likely sources of the differences in the non-mass-dependent isotopic composition of CO2 between the laboratory and the stratosphere and between different regions of the stratosphere.;Having accounted for the non-mass-dependent isotopic composition of CO 2 at an atmospheric O2/CO2 mixing ratio, I performed additional laboratory measurements of the non-mass-dependent isotopic composition of CO2 as a function of the O2/CO2 mixing ratio to explore the dramatic decrease in the non-mass-dependent 17 O and 18O enrichments in CO2 as the O 2/CO2 mixing ratio decreases found in previous experiments. Kinetics modeling shows that expected changes in the non-mass-dependent KIEs in ozone formation as O2/CO2 decreases cannot explain the O2/CO2 dependence of the non-mass-dependent enrichments in CO2, so a number of different potential chemical mechanisms with non-mass-dependent isotope effects were tested using the model. Of the mechanisms tested, only inclusion of non-thermal rate coefficients for the reactions of 16O(1D), 17O(1D), and 18O(1D) with O2, CO2, and O3 led to any significant decrease in the non-mass-dependent isotopic composition of CO2 as the O2/CO2 mixing ratio is decreased in the model. (Abstract shortened by UMI.).
机译:O(3P)+ O 2→O3 * + M→O3 + M *在三体臭氧形成反应中的非典型大且不依赖质量的动力学同位素效应(KIEs)导致不依赖质量的氧在实验室和大气中都观察到O3的同位素组成。理论工作表明,尽管潜在的化学物理学仍然神秘,但在激发的臭氧络合物O3 *的生命周期中动态驱动的量子对称同位素效应或它的碰撞稳定性是造成这种现象的原因。平流层CO 2也具有非质量依赖性的氧同位素组成,该组分被认为是通过光解从臭氧中转移形成O(1D),然后发生O(1D)+ CO2同位素交换反应。然而,无论是在紫外光化学实验中还是在平流层空气样品中测得的二氧化碳的非质量依赖性同位素组成,都无法通过臭氧形成过程中的同位素效应来轻易解释,从而导致一些人声称,臭氧光解过程中必须存在其他异常同位素效应,或者在O(1D)+ CO2同位素交换反应中在这里提出的研究结果中,我详细介绍了对臭氧的非质量依赖性同位素组成及其向平流层CO2转移的一些重要进展。我通过在光化学实验中对O 3和CO 2的同位素组成进行新的测量和动力学建模取得了这些进展,在该实验中,用汞灯的UV光照射了O 2,CO 2和其他浴气体的混合物,并对这些结果进行了比较。与平流层CO2同位素组成的纬度,高度和季节相关性;为应用于平流层CO2的非质量相关同位素组成,我使用动力学模型证明了臭氧中非质量相关的同位素效应在实验室测量大气混合比下O2和CO2的紫外线辐照混合物时,仅通过气溶胶的形成就可以定量说明CO2的非质量依赖性同位素组成。然后,我使用动力学模型提供了一个概念框架,以理解实验室实验和平流层之间以及在大气测量中发现的平流层不同区域之间二氧化碳的非质量依赖性同位素组成的显着差异。基于模型对臭氧KIE的温度依赖性的敏感性和臭氧光解中质量依赖的同位素效应,发现温度和臭氧光解相对速率的差异可能是非质量依赖性的差异的可能来源实验室与平流层之间以及平流层不同区域之间的CO2同位素组成;在考虑了大气O2 / CO2混合比下CO 2的非质量依赖同位素组成之后,我对非依赖于CO 2的同位素组成与O 2 / CO 2混合比的关系,以探索先前实验中发现随着CO 2与CO 2混合比的降低,CO 2非质量依赖的17 O和18 O富集度的急剧下降。动力学模型表明,随着O2 / CO2减少,臭氧形成中非质量依赖性KIE的预期变化不能解释CO2非质量依赖性富集的O2 / CO2依赖性,因此,许多不同的潜在化学机理与非使用该模型测试了质量依赖的同位素效应。在测试的机理中,仅包括16O(1D),17O(1D)和18O(1D)与O2,CO2和O3反应的非热速率系数,会导致非质量数显着降低。在模型中,随着O2 / CO2混合比的降低,CO2的依赖同位素组成降低。 (摘要由UMI缩短。)。

著录项

  • 作者

    Wiegel, Aaron Andrew.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Chemistry Physical.;Atmospheric Chemistry.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号