首页> 外文OA文献 >ESTIMATION OF RECEIVER OPERATING CHARACTERISTIC (ROC) CURVE PARAMETERS: SMALL SAMPLE PROPERTIES OF ESTIMATORS.
【2h】

ESTIMATION OF RECEIVER OPERATING CHARACTERISTIC (ROC) CURVE PARAMETERS: SMALL SAMPLE PROPERTIES OF ESTIMATORS.

机译:接收器操作特征(ROC)曲线参数的估计:估计器的小样本特性。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

When studying detection systems, parameters associated with the Receiver Operating Characteristic (ROC) curve are often estimated to assess system performance. In some applied settings it is often not possible to test the detection system with large numbers of stimuli. The resulting small sample statistics many have undesirable properties. The characteristics of these small sample ROC estimators were examined in a Monte Carlo simulation. Three popular ROC parameters were chosen for study. One of the parameters was a single parameter index of system performance, Area under the ROC curve. The other parameters, ROC intercept and slope, were considered as a pair. ROC intercept and slope were varied along with sample size and points on the certainty rating scale to form a four way factorial design. Several types of estimators were examined. For the parameter, Area under the curve, Maximum Likelihood (ML), three types of Least Squares (LS), and Distribution Free (DF) estimators were considered. Except for the DF estimator, the same estimators were considered for the parameters, intercept and slope. These estimators were compared with respect to three characteristics: bias, efficiency, and consistency. For Area under the curve, the ML estimator was the least biased. The DF estimator was the most efficient, and all the estimators except the DF estimator appeared to be consistent. For intercept and slope the LS estimator that minimized vertical error of the points from the ROC curve (line) was the least biased for both estimators. This LS estimator was also the most efficient. This estimator along with the ML estimator also appeared to be the most consistent. The other two estimators had no significant trend toward consistency. These results along with other findings, illustrate that different estimators may be "best" for different sample sizes and for different parameters. Therefore, researchers should carefully consider the characteristics of ROC estimators before using them as indices of system performance.
机译:在研究检测系统时,通常会估计与接收器工作特性(ROC)曲线相关的参数以评估系统性能。在某些应用的设置中,通常不可能使用大量刺激来测试检测系统。所得的小样本统计量很多具有不良特性。这些小样本ROC估计量的特征在蒙特卡洛模拟中进行了检验。选择了三个流行的ROC参数进行研究。参数之一是系统性能的单个参数索引,ROC曲线下的面积。其他参数,ROC截距和斜率,被认为是一对。 ROC截距和斜率随样本大小和确定性评定尺度上的点而变化,以形成四向析因设计。研究了几种类型的估计量。对于参数,考虑了曲线下面积,最大似然(ML),最小二乘(LS)和无分布(DF)三种估计量。除DF估计量外,参数,截距和斜率也考虑了相同的估计量。将这些估计量的三个特征进行了比较:偏差,效率和一致性。对于曲线下的面积,ML估计量的偏差最小。 DF估计量是最有效的,并且除DF估计量以外的所有估计量似乎都是一致的。对于截距和斜率,最小化来自ROC曲线(线)的点的垂直误差的LS估计器对于两个估计器而言偏差最小。 LS估计器也是最有效的。该估计器与ML估计器似乎也是最一致的。另外两个估计量并没有明显的一致性趋势。这些结果以及其他发现表明,对于不同的样本量和不同的参数,不同的估计量可能是“最佳的”。因此,研究人员在将ROC估计量用作系统性能指标之前应仔细考虑其特征。

著录项

  • 作者

    BORGSTROM MARK CRAIG.;

  • 作者单位
  • 年度 1987
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号