首页> 外文OA文献 >SPATIAL-TEMPORAL DATA ANALYTICS AND CONSUMER SHOPPING BEHAVIOR MODELING
【2h】

SPATIAL-TEMPORAL DATA ANALYTICS AND CONSUMER SHOPPING BEHAVIOR MODELING

机译:时空数据分析和消费者购物行为建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

RFID technologies are being recently adopted in the retail space tracking consumer in-store movements. The RFID-collected data are location sensitive and constantly updated as a consumer moves inside a store. By capturing the entire shopping process including the movement path rather than analyzing merely the shopping basket at check-out, the RFID-collected data provide unique and exciting opportunities to study consumer purchase behavior and thus lead to actionable marketing applications.This dissertation research focuses on (a) advancing the representation and management of the RFID-collected shopping path data; (b) analyzing, modeling and predicting customer shopping activities with a spatial pattern discovery approach and a dynamic probabilistic modeling based methodology to enable advanced spatial business intelligence. The spatial pattern discovery approach identifies similar consumers based on a similarity metric between consumer shopping paths. The direct applications of this approach include a novel consumer segmentation methodology and an in-store real-time product recommendation algorithm. A hierarchical decision-theoretic model based on dynamic Bayesian networks (DBN) is developed to model consumer in-store shopping activities. This model can be used to predict a shopper's purchase goal in real time, infer her shopping actions, and estimate the exact product she is viewing at a time. We develop an approximate inference algorithm based on particle filters and a learning procedure based on the Expectation-Maximization (EM) algorithm to perform filtering and prediction for the network model. The developed models are tested on a real RFID-collected shopping trip dataset with promising results in terms of prediction accuracies of consumer purchase interests.This dissertation contributes to the marketing and information systems literature in several areas. First, it provides empirical insights about the correlation between spatial movement patterns and consumer purchase interests. Such correlation is demonstrated with in-store shopping data, but can be generalized to other marketing contexts such as store visit decisions by consumers and location and category management decisions by a retailer. Second, our study shows the possibility of utilizing consumer in-store movement to predict consumer purchase. The predictive models we developed have the potential to become the base of an intelligent shopping environment where store managers customize marketing efforts to provide location-aware recommendations to consumers as they travel through the store.
机译:RFID技术最近已在零售空间中采用,以跟踪消费者的店内活动。 RFID收集的数据对位置敏感,并且随着消费者在商店内移动而不断更新。通过捕获包括移动路径在内的整个购物过程,而不是仅在结帐时分析购物篮,RFID收集的数据为研究消费者的购买行为提供了独特而令人兴奋的机会,从而导致了可行的营销应用。 (a)促进对RFID收集的购物路径数据的表示和管理; (b)使用空间模式发现方法和基于动态概率建模的方法来分析,建模和预测客户购物活动,以实现高级空间商业智能。空间模式发现方法基于消费者购物路径之间的相似性度量来识别相似的消费者。这种方法的直接应用包括新颖的消费者细分方法和店内实时产品推荐算法。建立了基于动态贝叶斯网络(DBN)的分层决策理论模型,以对消费者的店内购物活动进行建模。该模型可用于实时预测购物者的购买目标,推断其购物行为并估算一次她正在查看的确切产品。我们开发了一种基于粒子滤波器的近似推理算法,以及一种基于期望最大化(EM)算法的学习过程,以对网络模型进行滤波和预测。所开发的模型在真实的RFID收集的购物行程数据集上进行了测试,结果在消费者购买兴趣的预测准确性方面具有可喜的结果。本论文为市场营销和信息系统方面的文献做出了贡献。首先,它提供了有关空间运动模式与消费者购买兴趣之间相关性的经验见解。这种关联已通过店内购物数据得到证明,但可以推广到其他营销环境,例如消费者的商店访问决策以及零售商的位置和类别管理决策。其次,我们的研究表明了利用消费者的店内移动来预测消费者购买的可能性。我们开发的预测模型有可能成为智能购物环境的基础,在该环境中,商店经理可以定制营销工作,以便在消费者穿越商店时向他们提供位置感知的建议。

著录项

  • 作者

    Yan Ping;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号