We use a method developed by Roberts. that optimizes the phase angles of an ensemble of plane waves with amplitudes determined from a Kolmogorov-like power spectrum, to construct magnetic field vector fluctuations having nearly constant magnitude and large variances in its components. This is a representation of the turbulent magnetic field consistent with that observed in the solar wind. Charged-particle pitch-angle diffusion coefficients are determined by integrating the equations of motion for a large number of charged particles moving under the influence of forces from our predefined magnetic field. We tested different cases by varying the kinetic energy of the particles (E-p) and the turbulent magnetic field variance (sigma(2)(B)). For each combination of E-p and sigma(2)(B), we tested three different models: (1) the so-called "slab" model, where the turbulent magnetic field depends on only one spatial coordinate and has significant fluctuations in its magnitude (b=root delta B-x(2)(z)+ delta B-y(2)(z) + B-0(2)); (2) the slab model optimized with nearly constant magnitude b; and. (3) the slab model turbulent magnetic field with nearly constant magnitude plus a "variance-conserving" adjustment. In the last case, this model attempts to conserve the variance of the turbulent components (sigma(2)(Bx) + sigma(2)(By)), which is found to decrease during the optimization with nearly constant magnitude. We found that there is little or no effect on the pitch-angle diffusion coefficient D mu mu between. models 1 and 2. However, the result from model 3. is significantly different. We also introduce a new method to accurately determine the pitch-angle diffusion coefficients as a function of mu.
展开▼
机译:我们使用罗伯茨开发的方法。这种方法可以优化振幅像从Kolmogorov一样的功率谱确定的平面波整体的相位角,从而构造出磁场矢量起伏,其幅度几乎是恒定的,并且其分量存在较大的变化。这是与太阳风中观察到的一致的湍流磁场的表示。带电粒子的俯仰角扩散系数是通过对大量带电粒子的运动方程积分而确定的,这些带电粒子在来自我们预定义磁场的力的作用下运动。我们通过改变粒子的动能(E-p)和湍流磁场方差(sigma(2)(B))来测试不同的情况。对于Ep和sigma(2)(B)的每种组合,我们测试了三种不同的模型:(1)所谓的“平板”模型,其中湍流磁场仅取决于一个空间坐标,并且幅度上存在明显的波动(b =根增量Bx(2)(z)+增量By(2)(z)+ B-0(2)); (2)以近乎恒定的幅度b优化的平板模型;和。 (3)具有近似恒定幅值的平板模型湍流磁场加上“方差保持”调整。在最后一种情况下,该模型尝试保留湍流分量(sigma(2)(Bx)+ sigma(2)(By))的方差,该方差在优化过程中以接近恒定的幅度减小。我们发现对螺距角扩散系数D mu mu几乎没有影响。模型1和2。但是,模型3的结果却大不相同。我们还介绍了一种新方法,可以根据mu准确确定俯仰角扩散系数。
展开▼