首页> 外文OA文献 >Knowledge refreshing: Model, heuristics and applications
【2h】

Knowledge refreshing: Model, heuristics and applications

机译:知识更新:模型,启发式方法和应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With the wide application of information technology in organizations, especially the rapid growth of E-Business, masses of data have been accumulated. Knowledge Discovery in Databases (KDD) gives organizations the tools to sift through vast data stores to extract knowledge supporting organizational decision making. Most of the KDD research has assumed that data is static and focused on either efficiency improvement of the KDD process (e.g., designing more efficient KDD algorithms) or business applications of KDD. However, data is dynamic in reality (i.e., new data continuously added in). Knowledge discovered using KDD becomes obsolete rapidly, as the discovered knowledge only reflects the status of its dynamic data source when running KDD. Newly added data could bring in new knowledge or invalidate some discovered knowledge. To support effective decision making, knowledge discovered using KDD needs to be updated along with its dynamic data source. In this dissertation, we research on knowledge refreshing, which we define as the process to keep knowledge discovered using KDD up-to-date with its dynamic data source. We propose an analytical model based on the theory of Markov decision process, solutions and heuristics for the knowledge refreshing problem. We also research on how to apply KDD to such application areas as intelligent web portal design and network content management. The knowledge refreshing research identifies and solves a fundamental and general problem appearing in all KDD applications; while the applied KDD research provides a test environment for solutions resulted from the knowledge refreshing research.
机译:随着信息技术在组织中的广泛应用,尤其是电子商务的快速增长,海量数据已经积累。数据库知识发现(KDD)为组织提供了筛选庞大数据存储的工具,以提取支持组织决策的知识。大多数KDD研究都假设数据是静态的,并且专注于KDD流程的效率提高(例如,设计更有效的KDD算法)或KDD的业务应用。但是,数据实际上是动态的(即不断添加新数据)。使用KDD发现的知识很快就会过时,因为发现的知识仅反映运行KDD时其动态数据源的状态。新添加的数据可能会带来新知识或使某些发现的知识无效。为了支持有效的决策,需要更新使用KDD发现的知识及其动态数据源。在本文中,我们研究了知识更新,将其定义为保持使用KDD及其动态数据源更新发现知识的过程。我们提出了一个基于马尔可夫决策过程,解决方案和启发式知识更新理论的分析模型。我们还研究了如何将KDD应用于智能Web门户设计和网络内容管理等应用领域。知识更新研究确定并解决了所有KDD应用程序中出现的基本和普遍问题;而应用的KDD研究为知识更新研究产生的解决方案提供了测试环境。

著录项

  • 作者

    Fang Xiao;

  • 作者单位
  • 年度 2003
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号