首页> 外文OA文献 >Non-Null Interferometer for Testing of Aspheric Surfaces
【2h】

Non-Null Interferometer for Testing of Aspheric Surfaces

机译:用于测试非球面的非零干涉仪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The use of aspheric surfaces in optical designs can allow for improved performance with fewer optical elements. Their use has become common place due to advancements in optical manufacturing technologies. Standard interferometric testing of aspheric surfaces makes use of part specific null optics in order to match the test wavefront to the aspheric surface under test. Non-null interferometric testing offers the possibility to test a range of aspheric surfaces with a single interferometer design without the need for part specific null optics. However, non-null tests can generate interferograms with very high fringe frequencies that must be resolved and unwrapped, wavefronts with large slopes that must be imaged without vignetting, and induced aberrations which must be separated from the surface errors of the part. The main goal of this project was the construction of a non-null interferometer capable of testing the aspheric tooling used in the manufacturing of soft contact lenses. Sub-Nyquist interferometry was used to allow for large wavefront departures which generate high fringe frequency interferograms to be both captured and unwrapped. The sparse array sensor at the heart of the Sub-Nyquist technique sets limits on both the range of the parts to be tested and the design of the interferometer. Characterization of the interferometer was achieved through the reverse optimization and reverse ray tracing of a model of the interferometer and was aided by multiple measurements of the test part at shifted positions. The system was found to be capable of measuring parts with aspheric departure of over 60λ from the best fit sphere, which with introduced part shifts, generated over 300λ of OPD at the detector. The OPD introduced by the parts was measured to an accuracy of at least 0.76λ peak to valley and 0.12λ rms.
机译:在光学设计中使用非球面可以减少光学元件,从而提高性能。由于光学制造技术的进步,它们的使用已变得司空见惯。非球面的标准干涉测试使用零件特定的零光学元件,以使测试波前与被测非球面匹配。非零干涉仪测试提供了使用单个干涉仪设计来测试一系列非球面表面的可能性,而无需特定于零件的零光学器件。但是,非零测试可能会产生具有很高条纹频率的干涉图,必须将其分辨和解开,产生具有大斜率的波阵面,必须对它们进行成像而无渐晕现象,并且必须将感应像差与零件的表面误差分开。该项目的主要目标是构建一种非零干涉仪,该干涉仪能够测试软性隐形眼镜制造中使用的非球面工具。次奈奎斯特干涉仪用于允许较大的波前偏离,从而产生高条纹频率的干涉图,并被捕获和解包。 Sub-Nyquist技术的核心是稀疏阵列传感器,它限制了要测试的零件范围和干涉仪的设计。干涉仪的特性是通过对干涉仪模型进行反向优化和反向射线追踪来实现的,并通过在移位位置多次测试零件来进行辅助。发现该系统能够测量非球面偏离最适合球面超过60λ的零件,该零件随着引入的零件偏移而在检测器上产生超过300λ的OPD。测量零件引入的OPD的精度至少为峰峰值至谷值的0.76λ和均方根值的0.12λ。

著录项

  • 作者

    Sullivan John Joseph;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号