首页> 外文OA文献 >A Theoretical Prediction Method for Trapped Mode Flow-Acoustic Resonances in a Wind Tunnel with a Side Cavity
【2h】

A Theoretical Prediction Method for Trapped Mode Flow-Acoustic Resonances in a Wind Tunnel with a Side Cavity

机译:侧腔风洞中陷波流声共振的理论预测方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cavity flow-acoustic resonances may occur when a fluid stream flows past a recessed cavity in a wall. These resonances may lead to high unsteady pressure levels. The resonance involves a coupling between the instability wave which propagates downstream on the shear-layer that spans the open face of the cavity, and acoustic waves that propagate back upstream inside and outside the cavity. These waves are coupled by the scattering processes at the ends of the cavity.udPrevious theoretical research considered cavities in a wall that bounds an infinite stream. In many of the experiments on cavity resonances, however, the cavity is placed in a side wall of a wind tunnel. When the surrounding wind tunnel walls are not acoustically treated, the resonances can be very strong. My research is a theoretical investigation of the case of a cavity in a side wall of a wind tunnel.udRecently, a mode trapping phenomenon has been proposed as an explanation for the very strong cavity resonances in the wind tunnel case. The mode trapping occurs when the critical frequency of a mode in the tunnel-cavity region is slightly lower than the critical frequency of the corresponding mode in the tunnel region. The region between these two critical frequencies is defined as a frequency window. Experiments show that very high pressure levels are observed in these frequency windows. udThe goal of my research is to develop a global theory of cavity resonances in the wind tunnel geometry. The global theory couples solutions for the instability wave and the acoustic waves through scattering analyses at the ends of the cavity. Resonance frequencies, spatial mode shapes and linear growth rates are predicted. The theoretical predictions are consistent with experimental measurements and demonstrate that the mode trapping phenomenon explains the experimentally observed behavior.
机译:当流体流流过壁中的凹腔时,可能会发生腔流声共振。这些共振可能导致较高的不稳定压力水平。共振涉及不稳定性波和声波之间的耦合,该不稳定性波在跨越腔的敞开面的剪切层上向下游传播,而声波向后传播到腔内部和外部的上游。这些波是通过腔体末端的散射过程耦合的。 ud以前的理论研究认为,在无限流壁中的腔体是有限的。然而,在许多关于腔共振的实验中,腔被放置在风洞的侧壁中。如果未对周围的风洞壁进行声学处理,则共振会非常强烈。我的研究是对风洞侧壁中的空腔情况的理论研究。 ud最近,已经提出了一种模式捕获现象来解释风洞中非常强烈的空腔共振。当在隧道空腔区域中的模式的临界频率略低于在隧道区域中的相应模式的临界频率时,发生模式陷获。这两个临界频率之间的区域定义为频率窗口。实验表明,在这些频率窗口中观察到非常高的压力水平。 ud我研究的目标是发展风洞几何学中的腔共振的整体理论。整体理论通过在腔体末端的散射分析将不稳定波和声波的解耦合起来。可以预测共振频率,空间模式形状和线性增长率。理论预测与实验测量结果一致,并表明模式捕获现象解释了实验观察到的行为。

著录项

  • 作者

    Fang Ying;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号