首页> 外文OA文献 >GPU Accelerated Study of Heat Transfer and Fluid Flow by Lattice Boltzmann Method on CUDA
【2h】

GPU Accelerated Study of Heat Transfer and Fluid Flow by Lattice Boltzmann Method on CUDA

机译:在CUDA上使用Lattice Boltzmann方法进行GPU加速的传热和流体流动研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Lattice Boltzmann method (LBM) has been developed as a powerful numerical approach to simulate the complex fluid flow and heat transfer phenomena during the past two decades. As a mesoscale method based on the kinetic theory, LBM has several advantages compared with traditional numerical methods such as physical representation of microscopic interactions, dealing with complex geometries and highly parallel nature. Lattice Boltzmann method has been applied to solve various fluid behaviors and heat transfer process like conjugate heat transfer, magnetic and electric field, diffusion and mixing process, chemical reactions, multiphase flow, phase change process, non-isothermal flow in porous medium, microfluidics, fluid-structure interactions in biological system and so on. In addition, as a non-body-conformal grid method, the immersed boundary method (IBM) could be applied to handle the complex or moving geometries in the domain. The immersed boundary method could be coupled with lattice Boltzmann method to study the heat transfer and fluid flow problems. Heat transfer and fluid flow are solved on Euler nodes by LBM while the complex solid geometries are captured by Lagrangian nodes using immersed boundary method. Parallel computing has been a popular topic for many decades to accelerate the computational speed in engineering and scientific fields. Today, almost all the laptop and desktop have central processing units (CPUs) with multiple cores which could be used for parallel computing. However, the cost of CPUs with hundreds of cores is still high which limits its capability of high performance computing on personal computer. Graphic processing units (GPU) is originally used for the computer video cards have been emerged as the most powerful high-performance workstation in recent years. Unlike the CPUs, the cost of GPU with thousands of cores is cheap. For example, the GPU (GeForce GTX TITAN) which is used in the current work has 2688 cores and the price is only 1,000 US dollars. The release of NVIDIA's CUDA architecture which includes both hardware and programming environment in 2007 makes GPU computing attractive. Due to its highly parallel nature, lattice Boltzmann method is successfully ported into GPU with a performance benefit during the recent years. In the current work, LBM CUDA code is developed for different fluid flow and heat transfer problems. In this dissertation, lattice Boltzmann method and immersed boundary method are used to study natural convection in an enclosure with an array of conduting obstacles, double-diffusive convection in a vertical cavity with Soret and Dufour effects, PCM melting process in a latent heat thermal energy storage system with internal fins, mixed convection in a lid-driven cavity with a sinusoidal cylinder, and AC electrothermal pumping in microfluidic systems on a CUDA computational platform. It is demonstrated that LBM is an efficient method to simulate complex heat transfer problems using GPU on CUDA.
机译:格子Boltzmann方法(LBM)已被开发为一种强大的数值方法,用于模拟过去二十年来复杂的流体流动和传热现象。作为基于动力学理论的中尺度方法,与传统的数值方法相比,LBM具有许多优势,例如微观相互作用的物理表示,处理复杂的几何形状和高度平行的性质。格子Boltzmann方法已用于解决各种流体行为和传热过程,例如共轭传热,磁场和电场,扩散和混合过程,化学反应,多相流,相变过程,多孔介质中的非等温流,微流体,生物系统中的流体-结构相互作用等。另外,作为非保形网格方法,沉浸边界方法(IBM)可以应用于处理领域中的复杂或移动几何。浸入边界方法可以与格子玻尔兹曼方法结合使用来研究传热和流体流动问题。 LBM在Euler节点上解决了传热和流体流动问题,而拉格朗日节点使用沉浸边界方法捕获了复杂的固体几何形状。数十年来,并行计算一直是加速工程和科学领域中计算速度的热门话题。如今,几乎所有笔记本电脑和台式机都具有带有多个内核的中央处理器(CPU),可用于并行计算。但是,具有数百个内核的CPU的成本仍然很高,这限制了其在个人计算机上进行高性能计算的能力。图形处理单元(GPU)最初用于计算机视频卡,近年来已成为功能最强大的高性能工作站。与CPU不同,具有数千个内核的GPU的成本很便宜。例如,当前工作中使用的GPU(GeForce GTX TITAN)具有2688个内核,价格仅为1000美元。 NVIDIA在2007年发布的CUDA架构(包括硬件和编程环境)使GPU计算具有吸引力。由于其高度并行的特性,近年来格子Boltzmann方法已成功移植到GPU中,并具有性能优势。在当前工作中,针对不同的流体流动和传热问题开发了LBM CUDA代码。本文采用格子玻尔兹曼法和沉浸边界法研究具有一系列障碍物的围护结构内的自然对流,具有Soret和Dufour效应的垂直腔内的双扩散对流,潜热热能中的PCM熔化过程。带有内部散热片的存储系统,在带有正弦圆柱体的盖驱动腔中的混合对流以及在CUDA计算平台上的微流体系统中进行的交流电热泵。事实证明,LBM是在CUDA上使用GPU模拟复杂传热问题的有效方法。

著录项

  • 作者

    Ren Qinlong;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号