首页> 美国卫生研究院文献>Biomicrofluidics >Acoustic driven flow and lattice Boltzmann simulations to study cell adhesion in biofunctionalized μ-fluidic channels with complex geometry
【2h】

Acoustic driven flow and lattice Boltzmann simulations to study cell adhesion in biofunctionalized μ-fluidic channels with complex geometry

机译:声驱动流和格子Boltzmann模拟研究具有复杂几何形状的生物功能化μ流体通道中的细胞粘附

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Accurately mimicking the complexity of microvascular systems calls for a technology which can accommodate particularly small sample volumes while retaining a large degree of freedom in channel geometry and keeping the price considerably low to allow for high throughput experiments. Here, we demonstrate that the use of surface acoustic wave driven microfluidics systems successfully allows the study of the interrelation between melanoma cell adhesion, the matrix protein collagen type I, the blood clotting factor von Willebrand factor (vWF), and microfluidic channel geometry. The versatility of the tool presented enables us to examine cell adhesion under flow in straight and bifurcated microfluidic channels in the presence of different protein coatings. We show that the addition of vWF tremendously increases (up to tenfold) the adhesion of melanoma cells even under fairly low shear flow conditions. This effect is altered in the presence of bifurcated channels demonstrating the importance of an elaborate hydrodynamic analysis to differentiate between physical and biological effects. Therefore, computer simulations have been performed along with the experiments to reveal the entire flow profile in the channel. We conclude that a combination of theory and experiment will lead to a consistent explanation of cell adhesion, and will optimize the potential of microfluidic experiments to further unravel the relation between blood clotting factors, cell adhesion molecules, cancer cell spreading, and the hydrodynamic conditions in our microcirculatory system.
机译:准确地模拟微血管系统的复杂性要求一种技术,该技术可以容纳特别小的样本量,同时在通道几何结构中保留很大的自由度,并保持相当低的价格以允许进行高通量实验。在这里,我们证明了使用声表面波驱动的微流体系统成功地进行了黑素瘤细胞粘附,I型基质蛋白胶原蛋白,凝血因子von Willebrand因子(vWF)和微流体通道几何之间的相互关系的研究。所提供工具的多功能性使我们能够检查在存在不同蛋白质涂层的情况下,在笔直和分叉的微流体通道中流动下的细胞粘附情况。我们显示,即使在相当低的剪切流动条件下,vWF的添加也极大地增加了黑素瘤细胞的粘附性(多达十倍)。在存在分叉通道的情况下,此效果发生了变化,这表明进行精细的水动力分析以区分物理和生物效果的重要性。因此,已经与实验一起进行了计算机仿真,以揭示通道中的整个流量曲线。我们得出的结论是,理论和实验的结合将导致对细胞粘附的一致解释,并将优化微流体实验的潜力,以进一步揭示凝血因子,细胞粘附分子,癌细胞扩散和体内流体动力学条件之间的关系。我们的微循环系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号