首页> 外文OA文献 >SDN-Enabled Dynamic Feedback Control and Sensing in Agile Optical Networks
【2h】

SDN-Enabled Dynamic Feedback Control and Sensing in Agile Optical Networks

机译:敏捷光网络中支持SDN的动态反馈控制和传感

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fiber optic networks are no longer just pipelines for transporting data in the long haul backbone. Exponential growth in traffic in metro-regional areas has pushed higher capacity fiber toward the edge of the network, and highly dynamic patterns of heterogeneous traffic have emerged that are often bursty, severely stressing the historical "fat and dumb pipe" static optical network, which would need to be massively over-provisioned to deal with these loads. What is required is a more intelligent network with a span of control over the optical as well as electrical transport mechanisms which enables handling of service requests in a fast and efficient way that guarantees quality of service (QoS) while optimizing capacity efficiency. An "agile" optical network is a reconfigurable optical network comprised of high speed intelligent control system fed by real-time in situ network sensing. It provides fast response in the control and switching of optical signals in response to changing traffic demands and network conditions. This agile control of optical signals is enabled by pushing switching decisions downward in the network stack to the physical layer. Implementing such agility is challenging due to the response dynamics and interactions of signals in the physical layer. Control schemes must deal with issues such as dynamic power equalization, EDFA transients and cascaded noise effects, impairments due to self-phase modulation and dispersion, and channel-to-channel cross talk. If these issues are not properly predicted and mitigated, attempts at dynamic control can drive the optical network into an unstable state. In order to enable high speed actuation of signal modulators and switches, the network controller must be able to make decisions based on predictive models. In this thesis, we consider how to take advantage of Software Defined Networking (SDN) capabilities for network reconfiguration, combined with embedded models that access updates from deployed network monitoring sensors. In order to maintain signal quality while optimizing network resources, we find that it is essential to model and update estimates of the physical link impairments in real-time. In this thesis, we consider the key elements required to enable an agile optical network, with contributions as follows: *Control Framework: extended the SDN concept to include the optical transport network through extensions to the OpenFlow (OF) protocol. A unified SDN control plane is built to facilitate control and management capability across the electrical/packet-switched and optical/circuit-switched portions of the network seamlessly. The SDN control plane serves as a platform to abstract the resources of multilayer/multivendor networks. Through this platform, applications can dynamically request the network resources to meet their service requirements. *Use of In-situ Monitors: enabled real-time physical impairment sensing in the control plane using in-situ Optical Performance Monitoring (OPM) and bit error rate (BER) analyzers. OPM and BER values are used as quantitative indicators of the link status and are fed to the control plane through a high-speed data collection interface to form a closed-loop feedback system to enable adaptive resource allocation. *Predictive Network Model: used a network model embedded in the control layer to study the link status. The estimated results of network status is fed into the control decisions to precompute the network resources. The performance of the network model can be enhanced by the sensing results. *Real-Time Control Algorithms: investigated various dynamic resource allocation mechanisms supporting an agile optical network. Intelligent routing and wavelength switching for recovering from traffic impairments is achieved experimentally in the agile optical network within one second. A distance-adaptive spectrum allocation scheme to address transmission impairments caused by cascaded Wavelength Selective Switches (WSS) is proposed and evaluated for improving network spectral efficiency.
机译:光纤网络不再只是在长途骨干网中传输数据的管道。城域区域流量的指数增长已将容量更高的光纤推向了网络的边缘,并且出现了高度动态的异构流量模式,这些模式经常会突发,从而严重强调了历史悠久的“胖子管道”静态光网络,需要大量超额配置以应对这些负载。所需要的是具有对光和电传输机制的控制范围的更智能的网络,该网络能够以快速有效的方式处理服务请求,从而在优化容量效率的同时保证服务质量(QoS)。 “敏捷”光网络是一种可重新配置的光网络,其中包括通过实时原位网络传感提供的高速智能控制系统。它可以响应不断变化的流量需求和网络状况,在控制和交换光信号方面提供快速响应。通过将网络堆栈中的切换决策向下推送到物理层,可以实现对光信号的敏捷控制。由于物理层中信号的响应动态和交互作用,实现这种敏捷性具有挑战性。控制方案必须处理诸如动态功率均衡,EDFA瞬变和级联噪声影响,由于自相位调制和分散引起的损伤以及通道间串扰等问题。如果无法正确预测和缓解这些问题,则进行动态控制的尝试可能会使光网络进入不稳定状态。为了实现信号调制器和开关的高速启动,网络控制器必须能够基于预测模型做出决策。在本文中,我们考虑如何利用软件定义的网络(SDN)功能进行网络重新配置,并与从已部署的网络监视传感器访问更新的嵌入式模型相结合。为了在优化网络资源的同时保持信号质量,我们发现实时建模和更新物理链路损伤估计至关重要。在本文中,我们考虑了实现敏捷光网络所需的关键要素,其贡献如下:*控制框架:通过扩展OpenFlow(OF)协议,将SDN概念扩展为包括光传输网络。构建统一的SDN控制平面,以促进跨网络的电气/分组交换和光学/电路交换部分的无缝控制和管理功能。 SDN控制平面用作抽象多层/多供应商网络资源的平台。通过此平台,应用程序可以动态请求网络资源以满足其服务需求。 *使用原位监测器:使用原位光学性能监测(OPM)和误码率(BER)分析仪在控制平面中启用实时物理损伤感测。 OPM和BER值用作链路状态的定量指标,并通过高速数据收集接口馈送到控制平面,以形成闭环反馈系统以实现自适应资源分配。 *预测网络模型:使用嵌入在控制层中的网络模型来研究链路状态。网络状态的估计结果被馈送到控制决策中以预先计算网络资源。感测结果可以增强网络模型的性能。 *实时控制算法:研究了支持敏捷光网络的各种动态资源分配机制。通过敏捷光网络在一秒钟内实验性地实现了智能路由和波长交换,以从流量障碍中恢复。提出了一种距离自适应频谱分配方案,以解决级联波长选择开关(WSS)引起的传输损伤,并对其进行了评估,以提高网络频谱效率。

著录项

  • 作者

    Lin Likun;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号