首页> 外文OA文献 >ADAPTIVE ONLINE PERFORMANCE AND POWER ESTIMATION FRAMEWORK FOR DYNAMIC RECONFIGURABLE EMBEDDED SYSTEMS
【2h】

ADAPTIVE ONLINE PERFORMANCE AND POWER ESTIMATION FRAMEWORK FOR DYNAMIC RECONFIGURABLE EMBEDDED SYSTEMS

机译:动态可重构嵌入式系统的自适应在线性能和功率估计框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Runtime dynamic reconfiguration of field-programmable gate arrays (FPGAs) and devices incorporating microprocessors and FPGA has been successfully utilized to increase performance and reduce power consumption. While previous methods have been successful, they typically do not consider the runtime behavior of the application that can be significantly affected by variations in data inputs, user interactions, and environmental conditions. In this dissertation, we present a dynamically reconfigurable system and design methodology that optimizes performance and power consumption by determining which coprocessors to implement with an FPGA based upon the current application behavior.For dynamically reconfigurable systems, in which the selection of hardware coprocessors to implement within the FPGA is determined at runtime, online estimation methods are essential to evaluate the performance and power consumption impact of the hardware coprocessor selection. We present a base profile assisted online system-level performance and power estimation framework for estimating the speedup and power consumption of dynamically reconfigurable embedded systems.Importantly though, complex interactions between multiple application tasks, non-deterministic execution behavior, and effects of operating system scheduling introduce significant challenges. To address these, we further present an adaptive online performance and power estimation framework suing kernel speedup coefficient adaptation that monitors and adapts the changing application and system behavior for multitasked applications. By exhaustively examining predefined voltage and frequency settings for the microprocessor and hardware kernels, the potential speedup and power reduction can be effectively estimated for each configuration and voltage/frequency settings. These estimates can be utilized to determine the optimal system configuration. At the same time, the kernel speedup coefficients for each kernel can be dynamically updated to account for the difference between the estimated and actual performance measured at runtime.Finally, in order to quickly determine kernel selection and voltage and frequency settlings, we present an efficient, online heuristic performance and power estimation framework that significantly decreases execution time at the cost of a small increase in power consumption. This online heuristic estimation framework achieves significant power reduction compared to software only implementation without performance degradation.
机译:现场可编程门阵列(FPGA)以及结合了微处理器和FPGA的设备的运行时动态重配置已成功用于提高性能和降低功耗。尽管先前的方法已经成功,但是它们通常不考虑应用程序的运行时行为,该行为可能会因数据输入,用户交互和环境条件的变化而受到显着影响。在本文中,我们提出了一种动态可重配置的系统和设计方法,该方法和方法可以根据当前的应用程序行为确定通过FPGA实施哪些协处理器,从而优化性能和功耗。对于动态重配置的系统,在其中选择要实现的硬件协处理器FPGA是在运行时确定的,在线评估方法对于评估硬件协处理器选择对性能和功耗的影响至关重要。我们提供了一个基本的配置文件辅助的在线系统级性能和功率估计框架,用于估计动态可重新配置的嵌入式系统的速度和功耗。重要的是,多个应用程序任务之间的复杂交互,不确定的执行行为以及操作系统调度的影响带来重大挑战。为了解决这些问题,我们进一步提出了一种自适应的在线性能和功率估计框架,该框架使用内核加速系数自适应来监视和适应多任务应用程序不断变化的应用程序和系统行为。通过详尽检查微处理器和硬件内核的预定义电压和频率设置,可以针对每种配置和电压/频率设置有效地估计潜在的加速和功耗降低。这些估计可用于确定最佳系统配置。同时,可以动态更新每个内核的内核加速系数,以解决在运行时测得的估计性能与实际性能之间的差异。最后,为了快速确定内核选择以及电压和频率稳定,我们提出了一种有效的方法。的在线启发式性能和功耗估算框架,以少量增加功耗为代价,大大缩短了执行时间。与仅使用软件的实现相比,此在线启发式估计框架可实现显着的功耗降低,而不会降低性能。

著录项

  • 作者

    Mu Jingqing;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号