首页> 外文OA文献 >Numerical investigation of suction in a transitional flat-plate boundary layer
【2h】

Numerical investigation of suction in a transitional flat-plate boundary layer

机译:过渡平板边界层吸力的数值研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Direct Numerical Simulations (DMS) of the incompressible Navier-Stokes equations are used to investigate the effect of wall suction on transition in a flat-plate boundary layer. The Navier-Stokes equations are cast in vorticity-velocity formulation. The streamwise and wall-normal derivatives are discretized with compact differences, with a pseudospectral treatment of the spanwise derivatives. Two different methods are used for the time integration. In most calculations, an explicit four-stage Runge Kutta method is used. In some cases, a semi-implicit combination of a three-stage Runge-Kutta- and a Crank-Nicolson method is used. Several case studies are performed. The first case treats the effect of a single row of suction holes, aligned in the spanwise direction, on the evolution of a Tollmien-Schlichting wave. It is found that suction through small holes leads to noticeable nonlinear effects on disturbances with large spanwise wavenumbers. The effect of suction on secondary instability with regards to a large-amplitude Tollmien-Schlichting wave is investigated in the second case study. The suction configurations here are a permeable wall, spanwise slots, and streamwise slots. It is found that sufficiently strong suction suppresses the secondary instability. The different suction configurations are equally effective. The role of the Klebanoff-mode in boundary layer transition is the subject of the third case study. A numerical model of the Klebanoff-mode is presented that agrees well with experimental observations. It is shown how the interaction between the Klebanoff-mode and a Tollmien-Schlichting wave can cause transition. Wall suction is found to be an effective means to prevent transition and maintain laminar flow even in the presence of high-amplitude Klebanoff-mode fluctuations. In the last case study, the limit of very strong suction through holes is investigated. It is shown how the suction holes generate streamwise vortices that can become unstable and lead to bypass transition.
机译:不可压缩的Navier-Stokes方程的直接数值模拟(DMS)用于研究壁吸力对平板边界层过渡过程的影响。 Navier-Stokes方程以涡度-速度公式表示。沿流向和壁法向导数通过紧凑差异离散化,对跨向导数进行伪谱处理。时间积分使用两种不同的方法。在大多数计算中,使用显式的四阶段Runge Kutta方法。在某些情况下,将使用三阶段Runge-Kutta-方法和Crank-Nicolson方法的半隐式组合。进行了几个案例研究。第一种情况处理沿斯展方向对齐的单排吸孔对托尔米恩-施利希廷波的演化的影响。发现通过小孔的吸力对大跨度波数的扰动产生明显的非线性影响。在第二个案例研究中,研究了吸力对大幅度Tollmien-Schlichting波的二次不稳定性的影响。这里的抽吸构造是可渗透的壁,翼展方向的缝隙和流向的缝隙。发现足够强的吸力抑制了二次不稳定性。不同的抽吸配置同样有效。克莱伯诺夫模式在边界层过渡中的作用是第三个案例研究的主题。提出了Klebanoff模式的数值模型,该模型与实验观察非常吻合。它显示了Klebanoff模式与Tollmien-Schlichting波之间的相互作用如何引起跃迁。发现壁吸是防止过渡并保持层流的有效手段,即使存在高振幅Klebanoff模式波动也是如此。在最后一个案例研究中,研究了非常强的通孔吸力极限。它显示了吸入孔如何产生沿流方向的涡流,这些涡流会变得不稳定并导致旁路过渡。

著录项

  • 作者

    Meitz Hubert Lorenz 1964-;

  • 作者单位
  • 年度 1996
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号