首页> 外文OA文献 >Robust and Survivable Network Design Considering Uncertain Node and Link Failures
【2h】

Robust and Survivable Network Design Considering Uncertain Node and Link Failures

机译:考虑不确定节点和链路故障的鲁棒且可生存的网络设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The network design is a planning process of placing system components to provide service or meet certain needs in an economical way. It has strong links to real application areas, such as transportation network, communication network, supply chain, power grid, water distribution systems, etc. In practice, these infrastructures are very vulnerable to any failures of system components. Therefore, the design of such infrastructure networks should be robust and survivable to any failures caused by many factors, for example, natural disasters, intentional attacks, system limits, etc. In this dissertation, we first summarize the background and motivations of our research topic on network design problems. Different from literature on network design, we consider both uncertain node and link failures during the network design process. The first part of our research is to design a survivable network with mixed connectivity requirements, or the (k,l)-connectivity. The designed network can still be connected after failures of any k vertices and (l-1) edges or failures of any (k-1) vertices and l edges. After formally proving its relationships to edge and vertex disjoint paths, we present two integer programming (IP) formulations, valid inequalities to strengthen the IP formulations, and a cutting plane algorithm. Numerical experiments are performed on randomly generated graphs to compare these approaches. Special cases of this problem include: when k=0, l=1, this problem becomes the well-known minimum spanning tree problem; and when k=0, l ≥ 1, this problem is to find a minimum-cost l-edge-connected spanning subgraph, while when k ≥ 2, l=0, the problem is to find a minimum-cost k-vertex-connected spanning subgraph. As a generalization of k-minimum spanning tree and λ-edge-connected spanning subgraph problems for network design, we consider the minimum-cost λ-edge-connected k-subgraph problem, or the (k, λ)-subgraph problem, which is to find a minimum-cost λ-edge-connected subgraph of a graph with at least k vertices. This problem can be considered as designing k-minimum spanning tree with higher connectivity requirements. We also propose several IP formulations for exactly solving the (k, λ)-subgraph problem, based on some graph properties, for example, requirements of cutsets for a division of the graph and paths between any two vertices. In addition, we study the properties of (k,2)-subgraphs, such as connectivity, bridgeless, and strong orientation properties. Based on these properties, we propose several stronger and more compact IP formulations for solving the (k,2)-subgraph problem, which is a direct generalization of the k-minimum spanning tree problem. Serving as a virtual backbone for wireless ad hoc networks, the connected dominating set problem has been widely studied. We design a robust and survivable connected dominating set for a virtual backbone of a larger graph for ad hoc network. More specifically, we study the (k,l)-connected d-dominating set problem. Given a graph G=(V,E), a subset D ⊆ V is a (k,l)-connected d-dominating set if the subgraph induced by D has mixed connectivity at least (k,l) and every vertex outside of S has at least d neighbors from D. The type of virtual backbone is survivable and also robust for sending message under certain number of both node and link failures. We study the properties of such dominating set and also IP formulations. In addition, we design a cutting plane algorithm to solve it.
机译:网络设计是安排系统组件以经济的方式提供服务或满足某些需求的计划过程。它与诸如运输网络,通信网络,供应链,电网,配水系统等实际应用领域有着紧密的联系。实际上,这些基础架构非常容易受到系统组件任何故障的影响。因此,这样的基础设施网络的设计应该是健壮的,并且可以应对由自然灾害,故意攻击,系统限制等多种因素引起的任何故障。本文首先概述了本研究主题的背景和动机。关于网络设计的问题。与有关网络设计的文献不同,我们在网络设计过程中同时考虑了不确定的节点和链路故障。我们研究的第一部分是设计一个具有混合连通性要求或(k,l)连通性的可生存网络。在任何k个顶点和(l-1)边发生故障或任何(k-1)个顶点和l边发生故障后,仍然可以连接设计的网络。在正式证明其与边和顶点不相交路径的关系后,我们提出了两种整数编程(IP)公式,有效的不等式以增强IP公式以及切平面算法。在随机生成的图形上进行数值实验以比较这些方法。此问题的特殊情况包括:当k = 0,l = 1时,此问题成为众所周知的最小生成树问题;当k = 0,l≥1时,这个问题是找到一个最小成本的l边连通跨子图,而当k≥2,l = 0时,问题是找到一个最小成本的k-vertex-连接的跨子图。作为网络设计中k最小生成树和λ边连接的跨子图问题的一般化,我们考虑了成本最小的λ边连接的k子图问题或(k,λ)子图问题,是找到具有至少k个顶点的图的最小成本λ边连接子图。可以将这个问题视为设计具有更高连接性要求的k最小生成树。我们还基于某些图属性(例如,对图的划分的割集要求以及任意两个顶点之间的路径)提出了几种IP公式,以精确解决(k,λ)-子图问题。此外,我们研究(k,2)-子图的属性,例如连通性,无桥和强方向性。基于这些特性,我们提出了一些更强大,更紧凑的IP公式来解决(k,2)子图问题,这是k最小生成树问题的直接概括。作为无线ad hoc网络的虚拟骨干网,已广泛研究了连接的支配集问题。我们为ad hoc网络的较大图的虚拟主干网设计了一个健壮且可生存的连接控制集。更具体地说,我们研究(k,l)连通的d占优集问题。给定一个图G =(V,E),如果由D诱导的子图具有至少(k,l)个混合连通性且每个顶点在其外部都具有混合连通性,则子集D⊆V是一个(k,l)个连接的d控制集S与D至少有d个邻居。虚拟骨干网的类型是可生存的,并且对于在一定数量的节点和链路故障下都可以发送消息也很健壮。我们研究了这种主导集以及IP公式的属性。此外,我们设计了一种切面算法来解决该问题。

著录项

  • 作者

    Sadeghi Elham;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号