首页> 外文OA文献 >Extension of FDTD absorbing boundary condition methods to lossy dielectrics for the modeling of microwave devices
【2h】

Extension of FDTD absorbing boundary condition methods to lossy dielectrics for the modeling of microwave devices

机译:将FDTD吸收边界条件方法扩展到用于微波器件建模的有损电介质

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The finite difference time domain (FDTD) method has become a main stream analysis tool for engineers solving complex electromagnetic wave interaction problems. Its first principles approach affords it a wide range of applications from radar cross section (RCS) predictions of electrically large structures to molecular scale analysis of complex materials. This wide area of application may be attributed to the coupling of auxiliary differential equations with Maxwell's equations to describe the physical properties of a given problem. Previous extensions have included sub-cell models for describing lumped circuit elements within a single Yee cell, transformation of near-field information to the far-field for the analysis of antenna problems, dispersive material models and mesh truncation techniques. A review of these extensions is presented. What has not been previously developed is the ability to truncate lossy dielectric materials at the boundary of the simulation domain. Such outer boundary conditions (OBCs) are required in simulations dealing with ground penetrating radar, integrated circuits and many microwave devices such as stripline and microstrip structures. We have developed such an OBC by surrounding the exterior of the simulation domain with a lossy dispersive material based on a two time-derivative Lorentz model (L2TDLM). We present the development of the material as an absorber and ultimately as a full 3D OBC. Examples of microstrip, structures are presented to re-enforce the importance of modeling losses in dielectric structures. Finally, validation of the FDTD simulator and demonstration of the L2TDLM OBC's effectiveness is achieved by comparison with measured results from these microwave devices.
机译:时差有限差分(FDTD)方法已成为工程师解决复杂电磁波相互作用问题的主流分析工具。它的第一个原理方法为它提供了广泛的应用,从大型电气结构的雷达横截面(RCS)预测到复杂材料的分子尺度分析。广泛的应用领域可归因于辅助微分方程与麦克斯韦方程的耦合,以描述给定问题的物理性质。先前的扩展包括子单元模型,用于描述单个Yee单元内的集总电路元件,将近场信息转换为用于分析天线问题的远场,色散材料模型和网格截断技术。介绍了这些扩展。先前尚未开发的功能是在模拟域的边界截断有损耗的介电材料。在处理探地雷达,集成电路和许多微波设备(如带状线和微带结构)时,需要使用这种外边界条件(OBC)。我们通过使用基于两个时间导数的洛伦兹模型(L2TDLM)的有损色散材料围绕模拟域的外部来开发这样的OBC。我们介绍了该材料作为吸收剂的发展,并最终将其作为完整的3D OBC。提出了微带结构的实例,以加强介电结构中建模损耗的重要性。最后,通过与这些微波设备的测量结果进行比较,可以完成FDTD仿真器的验证和L2TDLM OBC有效性的演示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号