首页> 外文OA文献 >Statistical analysis of a stochastic automata model for the spread of disease among mobile individuals
【2h】

Statistical analysis of a stochastic automata model for the spread of disease among mobile individuals

机译:流动个体间疾病传播的随机自动机模型的统计分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present techniques that allow for the statistical identification of the infection front and for the microscopic control of macroscopic statistics in a simple stochastic lattice automata model for the spread of an infectious disease through a mobile host population. The individual based model consists of susceptible and infected individuals that are free to move about a regular lattice. These individuals interact with each other when located at the same node of the lattice, and susceptible individuals become infected with a probability of infection that is dependent on the number of infected individuals present. By using statistics from the healthy population alone, we present a method by which the spread of an infection in the model can be located spatially, even in a low-density population. A parameter which governs the local mobility rules of the model is shown to be functionally related to the non-dimensional statistical values of skewness and flatness for various macroscopic quantities. We show formal convergence to reaction-diffusion equations from the lattice Boltzmann equations of the model via a Hilbert expansion. The validity of both the lattice Boltzmann equations and the reaction-diffusion equations is shown in a low-density population regime.
机译:我们提出的技术允许对感染前沿进行统计识别,并在通过移动宿主种群传播传染病的简单随机晶格自动机模型中进行宏观统计的微观控制。基于个体的模型由易受感染和感染的个体组成,这些个体可以自由地围绕规则晶格移动。这些个体位于晶格的同一节点时会相互影响,易感个体被感染的可能性取决于存在的被感染个体的数量。通过仅使用健康人群的统计数据,我们提出了一种方法,即使在低密度人群中,也可以在空间上定位模型中感染的扩散。示出了控制模型的局部迁移率规则的参数在功能上与针对各种宏观量的偏度和平坦度的无量纲统计值有关。我们通过希尔伯特展开显示了模型的晶格Boltzmann方程对反应扩散方程的形式收敛。在低密度总体体系中显示了格子玻尔兹曼方程和反应扩散方程的有效性。

著录项

  • 作者

    Fosser Cecilia;

  • 作者单位
  • 年度 2000
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号