首页> 外文OA文献 >PC*: Efficient and portable runtime support for data-parallel languages.
【2h】

PC*: Efficient and portable runtime support for data-parallel languages.

机译:PC *:对数据并行语言的高效且可移植的运行时支持。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A variety of historically-proven computer languages have recently been extended to support parallel computation in a data-parallel framework. The performance capabilities of modern microprocessors have made the "cluster-of-workstations" model of parallel computing more attractive, by permitting organizations to network together workstations to solve problems in concert, without the need to buy specialized and expensive supercomputers or mainframes. For the most part, research on these extended languages has focused on compile-time analyses which detect data dependencies and use user-provided hints to distribute data and encode the necessary communication operations between nodes in a multiprocessor system. These analyses have shown their value when the necessary hints are provided, but require more information at compile-time than may be available in large-scale real-world programs. This dissertation focuses on elements important to an efficient and portable implementation of runtime support for data-parallel languages, to the near absence of any reliance on compile-time information. We consider issues ranging from data distribution and global/local address conversion, through a communication framework intended to support modern networked computers, and optimizations for a variety of communications patterns common to data-parallel programs. The discussion is grounded in a complete implementation of a data-parallel language, C*, on stock workstations connected with standard network hardware. The performance of the resulting system is evaluated on a set of eight benchmark programs by comparing it to optimized sequential solutions to the same problems, and to the reference implementation of C* on the Connection Machine CM5 supercomputer. Our implementation, denoted pC* for "portable C*", generally performs within a factor of four of the optimized sequential algorithms. In addition, the optimizations developed in this dissertation permit a cluster of twelve workstations connected with Ethernet to outperform a sixty-four node CM5 in absolute performance on three of the eight benchmarks. Though we specifically address the issues of runtime support for C*, the material in this dissertation applies equally well to a variety of other parallel systems, especially the data-parallel features of Fortran 90 and High Performance Fortran.
机译:最近已扩展了各种经过历史验证的计算机语言,以支持数据并行框架中的并行计算。通过允许组织将工作站联网在一起来共同解决问题,而无需购买专用且昂贵的超级计算机或大型机,现代微处理器的性能使并行计算的“工作站集群”模型更具吸引力。在大多数情况下,对这些扩展语言的研究集中于编译时分析,该分析可检测数据依赖性并使用用户提供的提示来分布数据并编码多处理器系统中节点之间必要的通信操作。当提供必要的提示时,这些分析已显示出它们的价值,但与大型现实程序中可能提供的信息相比,在编译时需要更多的信息。本文主要关注对数据并行语言的运行时支持的有效且可移植的实现非常重要的元素,几乎不需要依赖编译时信息。我们考虑的问题包括数据分发和全局/本地地址转换,通过旨在支持现代联网计算机的通信框架,以及针对数据并行程序常见的各种通信模式的优化。讨论的基础是在与标准网络硬件连接的普通工作站上完整实施数据并行语言C *。通过将所得系统的性能与针对相同问题的优化顺序解决方案进行比较,并与Connection Machine CM5超级计算机上C *的参考实现进行比较,从而在一组八个基准程序上评估了所得系统的性能。我们的实现称为“便携式C *”的pC *,通常在优化的顺序算法的四分之一内执行。此外,本文开发的优化技术使八个连接了以太网的12个工作站组成的集群在绝对性能上胜过64个节点CM5(在八个基准测试中,三个基准测试中)。尽管我们专门解决了对C *的运行时支持的问题,但本文中的材料同样适用于多种其他并行系统,尤其是Fortran 90和高性能Fortran的数据并行功能。

著录项

  • 作者

    Bigot Peter Alfred.;

  • 作者单位
  • 年度 1996
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号