首页> 外文OA文献 >Electronic structure and bond energy trends in silicon-hydrogen and germanium-hydrogen bond activation by transition metals.
【2h】

Electronic structure and bond energy trends in silicon-hydrogen and germanium-hydrogen bond activation by transition metals.

机译:过渡金属激活硅-氢和锗-氢键的电子结构和键能趋势。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The electronic structure factors that control Si-H and Ge-H bond activation by transition metals are investigated by means of photoelectron spectroscopy. Molecular orbital calculations are also used to gain additional insight into the orbital interactions involved in bond activation. The complexes studied have the general molecular formula (η⁵-C₅R'₅)Mn(CO)(L)HER₃, where R' is H or CH₃, L is CO or PMe₃, E is Si or Ge and R is Ph or Cl. These compounds are interesting models for catalysts in industrial processes like hydrosilation. The compounds display different stages of interaction and "activation" of the E-H bonds with the metal. One purpose is to measure the degree of Mn, Si, H 3-center-2-electron bonding in these complexes. The three-center interaction can be tuned by changing the substituents on Si, methylating the cyclopentadienyl ring, changing the ligand environment around the metal and substituting Si with Ge. The degree of activation is measured by observing the shifts in the metal and ligand ionizations relative to starting materials and free ligand in the photoelectron spectrum. Changing the substituent on Si extensively changes the degree of activation. Photoelectron spectral studies on (η⁵-C₅H₅)Mn(CO)₂HSiPh₃ show this to be a Mn(I) system. Progressive methylation of the cyclopentadienyl ring increases the electron richness at the metal center with no substantial effect on the degree of activation. Substitution on the metal (PMe₃ for CO) is less able to control the electronic structure factors of activation than the substitution on the Si atom. The magnitude of Ge-H bond activation is found to be of the same order as the Si-H bond activation for analogous compounds as found by studying (η⁵-C₅H₅)Mn(CO)₂HGePh₃, (η⁵-CH₃C₅H₄)Mn(CO)₂HGePh₃ and (η⁵- C₅(CH₃)₅)Mn(CO)₂HGePh₃ complexes by photoelectron spectroscopy. The photoelectron spectra of CpFe(CO)₂SiCl₃ and CpFe(CO)₂SiMe₃ were measured to study the electron charge shift from the metal to the ligand in these complexes as compared to CpMn(CO)₂HSiR₃ complexes. The photoelectron spectroscopic studies include numerous perturbations of the ligand and metal center to observe the extent of bond interaction and remain one of the best techniques to detect activation products.
机译:通过光电子能谱研究了通过过渡金属控制Si-H和Ge-H键活化的电子结构因子。分子轨道计算也可用于深入了解键激活涉及的轨道相互作用。所研究的配合物具有通式(η1 -C 1 R′5)Mn(CO)(L)HER 3,其中R′为H或CH 3,L为CO或PMe 3,E为Si或Ge,R为Ph或Cl。这些化合物是工业过程(如硅氢化反应)中催化剂的有趣模型。这些化合物显示出不同的相互作用阶段,并且E-H键与金属发生“活化”。一个目的是测量这些络合物中Mn,Si,H 3中心-2-电子的键合度。可以通过改变Si上的取代基,甲基化环戊二烯基环,改变金属周围的配体环境并用Ge取代Si来调节三中心相互作用。通过观察金属和配体电离相对于光电子光谱中的起始材料和游离配体的变化来测量活化程度。改变Si上的取代基会大大改变活化程度。对(η⁵-C₅H₅)Mn(CO)2HSiPh₃的光电子能谱研究表明它是一个Mn(I)系统。环戊二烯基环的逐步甲基化增加了金属中心的电子富集度,而对活化程度没有实质性影响。与在Si原子上进行取代相比,在金属上进行取代(对于CO而言为PMe₃)不能控制活化的电子结构因子。通过研究(η⁵-C₅H₅)Mn(CO)2HGePh₃,(η⁵-CH₃C₅H₄)Mn(CO)发现,Ge-H键的活化程度与类似化合物的Si-H键的活化程度相同。用光电子能谱分析2 HGePh 3和(η1-C 4(CH 3)3)Mn(CO)2 HGePh 3配合物。测量了CpFe(CO)2 SiCl 3和CpFe(CO)2 SiMe 3的光电子能谱,以研究与CpMn(CO)2 HSiR 4配合物相比,这些配合物中从金属到配体的电子电荷转移。光电子能谱研究包括对配体和金属中心的大量扰动,以观察键相互作用的程度,并且仍然是检测活化产物的最佳技术之一。

著录项

  • 作者

    Rai Chaudhuri Anjana.;

  • 作者单位
  • 年度 1989
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号