首页> 外文OA文献 >INFORMATION TRANSFER EFFICIENCY OF X-RAY IMAGE INTENSIFIER-BASED IMAGING SYSTEMS.
【2h】

INFORMATION TRANSFER EFFICIENCY OF X-RAY IMAGE INTENSIFIER-BASED IMAGING SYSTEMS.

机译:基于X射线图像增强器的成像系统的信息传输效率。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The information transfer efficiency of any quantum detection imaging system can be described by a unique measure: the detective quantum efficiency {DQE(f)}, which is a function of the statistically independent frequency channels. The DQE(f) is a combined descriptor which takes into account the signal transfer as well as noise transfer properties of a complete system. For a complicated multistage imaging system, each system component contributes noise. In this dissertation, physical and mathematical models for noise analysis are developed and verified experimentally with an x-ray image intensifier (XRII)-based imaging system. In such a system, the DQE at low frequency range is primarily determined by the x-ray detection and scintillation processes at the CsI layer of the XRII. The effects of x-ray photon energy and sensor layer thickness on DQE are measured in detail. Numerical calculations based on a physical model of x-ray interactions show a general agreement with the experimental data. At higher frequencies, the DQE behavior becomes more complicated. A mathematical model which combines the micro-image properties and noise statistics is formulated to analyze the noise power spectrum (NPS) of a linear n-stage imaging system. Measurement of NPS components of an XRII system verifies the validity of this analytical prediction. The associated image transfer properties are also measured with emphasis on the effect of signal-induced background on the image information transfer. The low frequency data derived from these image property measurements show further agreement with the numerical calculations based on the physical model. As a result of this predictability of information transfer efficiency, system gain and recording capacity are emphasized in the design consideration of a projected high performance XRII radiographic system.
机译:任何量子检测成像系统的信息传输效率都可以通过一种独特的方法来描述:检测量子效率{DQE(f)},它是统计上独立的频道的函数。 DQE(f)是一个组合描述符,它考虑了整个系统的信号传输以及噪声传输属性。对于复杂的多级成像系统,每个系统组件都会产生噪声。本文利用基于X射线图像增强器(XRII)的成像系统,开发了用于噪声分析的物理和数学模型,并进行了实验验证。在这样的系统中,低频范围的DQE主要由XRII的CsI层的X射线检测和闪烁过程确定。详细测量了X射线光子能量和传感器层厚度对DQE的影响。基于X射线相互作用的物理模型的数值计算表明与实验数据基本一致。在更高的频率下,DQE行为变得更加复杂。建立了将微图像特性和噪声统计数据相结合的数学模型,以分析线性n级成像系统的噪声功率谱(NPS)。 XRII系统的NPS组件的测量验证了此分析预测的有效性。还着重测量了相关的图像传输属性,重点是信号诱导的背景对图像信息传输的影响。从这些图像特性测量中得出的低频数据与基于物理模型的数值计算进一步吻合。由于信息传输效率的这种可预测性,在设计的高性能XRII射线照相系统的设计考虑中强调了系统增益和记录容量。

著录项

  • 作者

    FU TAO-YI.;

  • 作者单位
  • 年度 1984
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号