首页> 外文OA文献 >Hybrid Numerical Integration Scheme for Highly Oscillatory Dynamical Systems
【2h】

Hybrid Numerical Integration Scheme for Highly Oscillatory Dynamical Systems

机译:高振动动力系统的混合数值积分方案

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Computational efficiency of solving the dynamics of highly oscillatory systems is an important issue due to the requirement of small step size of explicit numerical integration algorithms. A system is considered to be highly oscillatory if it contains a fast solution that varies regularly about a slow solution. As for multibody systems, stiff force elements and contacts between bodies can make a system highly oscillatory. Standard explicit numerical integration methods should take a very small step size to satisfy the absolute stability condition for all eigenvalues of the system and the computational cost is dictated by the fast solution. In this research, a new hybrid integration scheme is proposed, in which the local linearization method is combined with a conventional integration method such as the fourth-order Runge-Kutta. In this approach, the system is partitioned into fast and slow subsystems. Then, the two subsystems are transformed into a reduced and a boundary-layer system using the singular perturbation theory. The reduced system is solved by the fourth-order Runge-Kutta method while the boundary-layer system is solved by the local linearization method. This new hybrid scheme can handle the coupling between the fast and the slow subsystems efficiently. Unlike other multi-rate or multi-method schemes, extrapolation or interpolation process is not required to deal with the coupling between subsystems. Most of the coupling effect can be accounted for by the reduced (or quasi-steady-state) system while the minor transient effect is taken into consideration by averaging. In this research, the absolute stability region for this hybrid scheme is derived and it is shown that the absolute stability region is almost independent of the fast variables. Thus, the selection of the step size is not dictated by the fast solution when a highly oscillatory system is solved, in turn, the computational efficiency can be improved. The advantage of the proposed hybrid scheme is validated through several dynamic simulations of a vehicle system including a flexible tire model. The results reveal that the hybrid scheme can reduce the computation time of the vehicle dynamic simulation significantly while attaining comparable accuracy.
机译:由于要求显式数值积分算法的步长较小,因此解决高振荡系统动力学问题的计算效率是一个重要问题。如果系统包含快速解决方案,而该解决方案通常会随着慢速解决方案而变化,则认为该系统具有很高的振荡性。对于多体系统,刚体元素和物体之间的接触会使系统高度振荡。标准的显式数值积分方法应采用很小的步长,以满足系统所有特征值的绝对稳定性条件,并且计算成本由快速求解决定。在这项研究中,提出了一种新的混合积分方案,该方案将局部线性化方法与常规积分方法(如四阶Runge-Kutta)相结合。通过这种方法,系统分为快速子系统和慢速子系统。然后,使用奇异摄动理论将这两个子系统转换为简化的边界层系统。简化的系统用四阶Runge-Kutta方法求解,而边界层系统用局部线性化方法求解。这种新的混合方案可以有效地处理快速子系统和慢速子系统之间的耦合。与其他多速率或多方法方案不同,不需要外推或内插过程来处理子系统之间的耦合。大部分的耦合效应可以由简化(或准稳态)系统解决,而较小的瞬态效应则通过平均来考虑。在这项研究中,推导了该混合方案的绝对稳定区域,结果表明绝对稳定区域几乎与快速变量无关。因此,当解决高度振荡的系统时,步长的选择不受快速解决方案的支配,从而可以提高计算效率。通过包括弹性轮胎模型的车辆系统的若干动态仿真,验证了所提出的混合方案的优势。结果表明,该混合方案可以显着减少车辆动态仿真的计算时间,同时达到相当的精度。

著录项

  • 作者

    Gil Gibin;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号