首页> 外文OA文献 >Nanoscale Characterization of the Electrical Properties of Oxide Electrodes at the Organic Semiconductor-Oxide Electrode Interface in Organic Solar Cells
【2h】

Nanoscale Characterization of the Electrical Properties of Oxide Electrodes at the Organic Semiconductor-Oxide Electrode Interface in Organic Solar Cells

机译:有机太阳能电池中有机半导体-氧化物电极界面处氧化物电极电性能的纳米级表征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This dissertation focuses on characterizing the nanoscale and surface averaged electrical properties of transparent conducting oxide (TCO) electrodes such as indium tin oxide (ITO) and transparent metal-oxide (MO) electron selective interlayers (ESLs), such as zinc oxide (ZnO), the ability of these materials to rapidly extract photogenerated charges from organic semiconductors (OSCs) used in organic photovoltaic (OPV) cells, and evaluating their impact on the power conversion efficiency (PCE) of OPV devices. In Chapter 1, we will introduce the fundamental principles regarding the need for low cost power generation, the benefits of OPV technologies, as well as the key principles that govern the operation of OPV devices and the key innovations that have advanced this technology. In Chapter 2 of this dissertation, we demonstrate an innovative application of conductive probe atomic force microscopy (CAFM) to map the nanoscale electrical heterogeneity at the interface between an electrode, such as ITO, and an OSC such as the p-type OSC copper phthalocyanine (CuPc).(MacDonald et al. (2012) ACS Nano, 6, p. 9623) In this work we collected arrays of J-V curves, using a CAFM probe as the top contact of CuPc/ITO systems, to map the local J-V responses. By comparing J-V responses to known models for charge transport, we were able to determine if the local rate-limiting step for charge transport is through the OSC (ohmic) or the CuPc/ITO interface (nonohmic). These results strongly correlate with device PCE, as demonstrated through the controlled addition of insulating alkylphosphonic acid self-assembled monolayers (SAMs) at the ITO/CuPc interface. Subsequent chapters focus on the electrical property characterization of RF-magnetron sputtered ZnO (sp-ZnO) ESL films on ITO substrates. We have shown that the energetic alignment of ESLs and the organic semiconducting (OSC) active materials plays a critical role in determining the PCE of OPV devices and the appearance of, or lack thereof, UV light soaking sensitivity. For ZnO and fullerene interfaces, we have shown that either minimizing the oxygen partial pressure during ZnO deposition or exposure of ZnO to UV light minimizes the energetic offset at this interface and maximizes device PCE. We have used a combination of device testing, device modeling, and impedance spectroscopy to fully characterize the effects that energetic alignment has on the charge carrier transport and charge carrier distribution within the OPV device. This work can be found in Chapter 3 of this dissertation and is in preparation for publication. We have also shown that the local properties of sp-ZnO films varies as a function of the underlying ITO crystal face. We show that the local ITO crystal face determines the local nucleation and growth of the sp-ZnO films. We demonstrate that this effects the morphology, the chemical resistance to etching as well as the surface electrical properties of the sp-ZnO films. This is likely due to differences in the surface mobility of sputtered Zn and O atoms on these crystal faces during film nucleation. This affects the nanoscale distribution of electrical and chemical properties. As a result we demonstrate that the PCE, and UV sensitivity of the J-V response of OPVs using sp-ZnO ESLs are strongly impacted by the distribution of ITO crystal faces at the surface of the substrate. This work can be found in Chapter 4 of this dissertation and is in preparation for publication. These studies have contributed to a detailed understanding of the role that electrical heterogeneity, insulating barriers and energetic alignment at the MO/OSC interface play in OPV PCE.
机译:本文致力于表征透明导电氧化物(TCO)电极(如氧化铟锡(ITO)和透明金属氧化物(MO)电子选择性夹层(ESLs),如氧化锌(ZnO)的纳米级和表面平均电性能,这些材料具有从有机光伏(OPV)电池中使用的有机半导体(OSC)快速提取光生电荷并评估其对OPV器件的功率转换效率(PCE)的影响的能力。在第一章中,我们将介绍有关低成本发电需求的基本原理,OPV技术的优势,以及支配OPV设备运行的关键原理以及使该技术得到发展的关键创新。在本论文的第2章中,我们演示了导电探针原子力显微镜(CAFM)的创新应用,以绘制电极(例如ITO)和OSC(例如p型OSC铜酞菁)之间的界面上的纳米级电异质性(MacDonald等人(2012)ACS Nano,6,p.9623)。在这项工作中,我们使用CAFM探针作为CuPc / ITO系统的顶部触点,收集了一系列JV曲线,以绘制局部JV回应。通过将J-V响应与已知的电荷传输模型进行比较,我们能够确定电荷传输的本地速率限制步骤是通过OSC(欧姆)还是通过CuPc / ITO接口(非欧姆)。这些结果与器件PCE密切相关,如通过在ITO / CuPc界面上受控添加绝缘烷基膦酸自组装单层(SAM)所证明的。随后的章节集中在ITO衬底上的射频磁控溅射ZnO(sp-ZnO)ESL膜的电性能表征。我们已经表明,ESL和有机半导体(OSC)活性材料的高能排列在确定OPV装置的PCE以及是否出现紫外线浸泡敏感性方面起着至关重要的作用。对于ZnO和富勒烯界面,我们已经表明,在ZnO沉积过程中使氧分压最小化,或者将ZnO暴露在紫外光下,可使该界面处的能量偏移最小化,并使设备PCE最大化。我们结合使用了器件测试,器件建模和阻抗谱技术,以充分表征高能对准对OPV器件内电荷载流子传输和电荷载流子分布的影响。这项工作可以在本论文的第3章中找到,并准备出版。我们还表明,sp-ZnO薄膜的局部特性随下面的ITO晶体面的变化而变化。我们表明,局部ITO晶面决定了sp-ZnO薄膜的局部成核和生长。我们证明这会影响sp-ZnO膜的形貌,耐化学腐蚀性以及表面电性能。这可能是由于薄膜成核过程中这些晶面上溅射的Zn和O原子的表面迁移率不同所致。这影响了电学和化学性质的纳米级分布。结果,我们证明了使用sp-ZnO ESL进行的OPV的J-V响应的PCE和UV敏感性受到衬底表面ITO晶面分布的强烈影响。这项工作可以在本论文的第四章中找到,并准备出版。这些研究有助于详细了解OPV PCE中MO / OSC接口上的电异质性,绝缘势垒和高能对准。

著录项

  • 作者

    MacDonald Gordon Alex;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号