首页> 外文OA文献 >Study of the physical, chemical and biological processes in semi-intensive fishponds: development of a mathematical model as a tool for managing white seabream (Diplodus sargus) production
【2h】

Study of the physical, chemical and biological processes in semi-intensive fishponds: development of a mathematical model as a tool for managing white seabream (Diplodus sargus) production

机译:半精养鱼塘的物理,化学和生物过程研究:开发数学模型作为管理白鲷(Diplodus sargus)生产的工具

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Semi-intensive aquaculture has been recognised as an “environmentally friendly” option.However, the low profitability and competitiveness of these systems compromise their economicviability. The optimization of production is thereby crucial for the sustainability of semiintensivepond aquaculture, and implies that fish yields are maximized with minimum impactson the environment. Understanding the physical, chemical and biological processes occurring infishponds is of outmost importance for defining farming strategies that optimize fish production.This knowledge is even more relevant when dealing with newly cultivated species, as the whiteseabream (Diplodus sargus). Due to the lack of information on the performance of this species inearth ponds, one of the main objectives of the present work was to study the physical, chemicaland biological processes in white seabream ponds, over a production cycle. The most relevantresults of this experimental work were that: i) the impacts of fish activity on bottom sedimentsare only noticeable above a fish biomass of 0.5 kg m-3 and a feeding rate of 5 kg d-1; ii) pondsediment and water quality was comparable to that of natural systems, suggesting that theassayed farming conditions ensure a good pond environment; and iii) pond water quality wasstrongly dependent on inflowing water and on benthic nutrient fluxes, emphasizing the relevanceof optimum water exchange rates and sediment treatment to an efficient pond management. Theother main objective of this work was to develop an ecological model to be used as a tool formanaging semi-intensive systems, to improve their economic and environmental performance.The added value of a modeling approach is that, due to their ability to integrate the complexity offishpond processes, models can be used to simulate the effect of different management scenarioson the pond environment and on the adjacent coastal systems. The model was implemented andtested with the white seabream as a case study, using data collected over the experimental work,together with literature data. Model construction was done in 3 steps: i) implementation of abiogeochemical model; ii) implementation of a fish Dynamic Energy Budget (DEB) model andiii) coupling of the two models. The biogeochemical model developed in this study is a mechanistic model that reproduces the dynamics of organic and inorganic nutrient (nitrogen andphosphorus) forms as well as of oxygen, in the pelagic and benthic compartments of an earthpond. This model not only helped understanding the interactions between pond variables andprocesses but also how pond structural features and operational parameters affect the water andsediment quality of pond systems. The fish DEB model was able to reproduce the growth ofwhite seabream as well as of gilthead seabream (Sparus aurata), a traditionally cultivatedspecies in semi-intensive ponds. This model was used to investigate which biological processesare more likely to influence fish performance and to explain inter-species growth variability. Acomparison between the DEB model parameters of the two Sparidae revealed that whiteseabream lower growth rates are presumably linked to a higher energy demand for bodymaintenance and a lower feed absorption efficiency. The coupled model was able to reproducefish pond dynamics, and was further used to simulate different management scenarios, related tostocking densities, water exchange rates and feeding strategies. Scenarios and standard farmingconditions were compared in terms of their effects on pond water and sediment quality, as wellas on final fish yields and nutrient discharges into the environment. Using the AnalyticalHierarchical Process (AHP) methodology, scenarios were ranked in order to evaluate the bestmanagement options for optimizing white seabream production. Results revealed that doublingthe standard stocking density and improving feed absorption efficiency, may enhance theperformance of semi-intensive white seabream production systems. Aside from providing a toolfor managing aquaculture systems, this work contains valuable information for definingguidelines on environmental standards (e.g. Maximum Recommended Values) for marine fishfarming.
机译:半集约化水产养殖被认为是“环境友好”的选择。但是,这些系统的低利润率和竞争力损害了它们的经济可行性。因此,生产的优化对于半精养池塘水产养殖的可持续性至关重要,并意味着在对环境的影响最小的情况下,最大限度地提高鱼类产量。了解鱼塘中发生的物理,化学和生物过程对于定义优化鱼类生产的养殖策略至关重要。当与新近养殖的物种如白鲷(Diplodus sargus)打交道时,这一知识尤为重要。由于缺乏有关该物种在土塘中表现的信息,因此本工作的主要目标之一是研究整个生产周期中白鲷鱼塘的物理,化学和生物过程。该实验工作最相关的结果是:i)鱼类活动对底部沉积物的影响仅在鱼类生物量为0.5 kg m-3和摄食速率为5 kg d-1以上才明显; ii)池塘的沉积物和水质与自然系统相当,这表明测定的耕作条件确保了良好的池塘环境; iii)池塘水质强烈依赖于流入水和底栖养分通量,强调最佳水交换率和沉积物处理与有效池塘管理的相关性。这项工作的另一个主要目的是开发一种生态模型,用作管理半精养系统的工具,以改善其经济和环境绩效。建模方法的附加价值在于,由于它们具有综合复杂性的能力在鱼塘过程中,可以使用模型来模拟不同管理方案对池塘环境和邻近沿海系统的影响。该模型的实施和测试以白鲷为例,使用了在实验工作中收集的数据以及文献数据。模型的建立分3个步骤进行:i)实施生物地球化学模型; ii)实施鱼类动态能源预算(DEB)模型,以及iii)两种模型的耦合。在这项研究中开发的生物地球化学模型是一种机械模型,可再现土塘中上层和底栖室中有机和无机营养物(氮和磷)形式以及氧气的动力学。该模型不仅有助于理解池塘变量和过程之间的相互作用,而且有助于池塘结构特征和运行参数如何影响池塘系统的水和沉积质量。鱼的DEB模型能够复制白鲷和头鲷(Sparus aurata)的生长,后者是半精养池塘中的传统养殖品种。该模型用于调查哪些生物过程更可能影响鱼类的生长并解释物种间的生长变异性。两个Spa科的DEB模型参数之间的比较表明,白鲷的较低生长率可能与维持人体所需的较高能量和较低的饲料吸收效率有关。耦合模型能够再现鱼塘的动态,并进一步用于模拟与放养密度,水交换率和喂养策略有关的不同管理方案。比较了各种情景和标准养殖条件对池塘水和沉积物质量的影响,以及对最终鱼类产量和向环境中排放的养分的影响。使用层次分析法(AHP)方法对方案进行排名,以评估优化白鲷生产的最佳管理方案。结果表明,将标准放养密度提高一倍并提高饲料吸收效率,可以提高半密集白鲷生产系统的性能。除了提供用于管理水产养殖系统的工具外,这项工作还包含宝贵的信息,可用于定义有关海洋鱼类养殖的环境标准(例如最大推荐值)的准则。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号