首页> 外文OA文献 >Rapidly Converging Activity Expansions For Representing The Thermodynamic Properties Of Fluid Systems: Gases, Non-Electrolyte Solutions, Weak And Strong Electrolyte Solutions
【2h】

Rapidly Converging Activity Expansions For Representing The Thermodynamic Properties Of Fluid Systems: Gases, Non-Electrolyte Solutions, Weak And Strong Electrolyte Solutions

机译:快速收敛的活动扩展,用于表示流体系统的热力学性质:气体,非电解质溶液,弱电解质溶液和强电解质溶液

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

For dilute gases and non-electrolyte solutions in the McMillan–Mayer standard state, an activity expansion due to Mayer has great advantages over the normal concentration expansion (virial equation) for strongly associating species. For weakly interacting systems, both approaches are suitable. The activity expansion eliminates the need to differentiate between strong “chemical” interactions and weak “physical” interactions since the same equation is used in each situation. The equation has been modified to represent electrolyte solutions in the McMillan–Mayer standard state by requiring that it be consistent with the Debye–Hückel and higher order limiting laws for strong electrolytes and that it be equivalent to a chemical association model for weak electrolytes. The result is a compact equation which contains no arbitrary ion-size parameters and which does not require the classification of an electrolyte as strong or weak. For 2:2 electrolytes, the equation gives a very good fit to the anomalous low concentration region. For practical thermodynamic calculations, similar equations for molal activity coefficients are proposed; good fits of the data are obtained.
机译:对于McMillan–Mayer标准状态下的稀气体和非电解质溶液,由于Mayer引起的活度扩展比强缔合物种的正常浓度扩展(病毒方程)更具优势。对于弱交互系统,两种方法均适用。活动扩展消除了区分强“化学”相互作用和弱“物理”相互作用的需要,因为在每种情况下都使用相同的方程式。对方程进行了修改,以表示麦克米伦-迈耶标准状态下的电解质溶液,要求该方程与德拜-休克尔和强电解质的高阶极限定律一致,并且等效于弱电解质的化学缔合模型。结果是一个紧凑的方程,其中不包含任何离子大小参数,并且不需要将电解质分类为强还是弱。对于2:2的电解质,该方程式非常适合异常的低浓度区域。对于实际的热力学计算,提出了类似的摩尔活度系数方程。获得了很好的数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号