首页> 外文OA文献 >Sliding vector fields for non-smooth dynamical systems having intersecting switching manifolds
【2h】

Sliding vector fields for non-smooth dynamical systems having intersecting switching manifolds

机译:具有相交开关歧管的非光滑动力系统的滑动矢量场

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider a differential equation ˙p = X(p), p ϵ R3 with discontinuous right-hand side and discontinuities occurring on an algebraic variety ∑. We discuss the dynamics of the sliding mode which occurs when for any initial condition near p ϵ ∑ the corresponding solution trajectories are attracted to ∑. First we suppose that ∑ = H-1(0) where H is a polynomial function and 0 ϵ R is a regular value. In this case ∑ is locally di↵eomorphic to the set F = {(x, y, z) ϵ R3; z = 0} (Filippov). Second we suppose that ∑ is the inverse image of a non–regular value. We focus our attention to the equations defined around singularities as described in [8]. More precisely, we restrict the degeneracy of the singularity so as to admit only those which appear when the regularity conditions in the definition of smooth surfaces of R3 in terms of implicit functions and immersions are broken in a stable manner. In this case ∑ is locally diffeomorphic to one of the following sets D = {(x, y, z) ϵ R3; xy = 0} (double crossing); T = {(x, y, z) ϵ R3; xyz = 0} (triple crossing); C = {(x, y, z) ϵ R3; z2-x2-y2 = 0}(cone) or W = {(x, y, z) ϵ R3; zx2-y2 = 0} (Whitney’s umbrella).
机译:我们考虑微分方程˙p= X(p),p ϵ R3,其中右边不连续且代数形式∑不连续。我们讨论了滑模的动力学,这种动力学发生在任何初始条件在p ϵ ∑附近时,相应的解轨迹被吸引到∑上。首先,我们假设∑ = H-1(0),其中H是多项式函数,而0 R是正则值。在这种情况下,∑对集合F = {(x,y,z)ϵ R3; z = 0}(Filippov)。其次,我们假设∑是非正则值的反像。我们将注意力集中在[8]中描述的围绕奇点定义的方程式上。更确切地说,我们限制奇点的简并性,以便仅允许当R3光滑表面的定义中的隐式函数和沉浸性的规则性条件以稳定的方式被破坏时出现的奇点。在这种情况下,∑对以下集合之一局部微分。D = {(x,y,z)ϵ R3; xy = 0}(两次穿越); T = {(x,y,z)ϵ R3; xyz = 0}(三重交叉); C = {(x,y,z)ϵ R3; z2-x2-y2 = 0}(圆锥)或W = {(x,y,z)ϵ R3; zx2-y2 = 0}(惠特尼的雨伞)。

著录项

  • 作者

    Llibre Jaume;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号