El desarrollo de nuevos procedimientos analíticos e instrumentación automáticos para la monitorización de parámetros (bio)químicos, tales como los que afectan a la calidad del agua, es de especial importancia debido a las graves consecuencias que puede tener el uso o consumo de un agua (bio)químicamente contaminada. Los microsistemas de análisis total o dispositivos Lab-On-a-Chip son cada vez más empleados con este propósito debido a la gran integración y automatización que ofrecen estos dispositivos, a través de la miniaturización, y a la posibilidad de realizar medidas in situ. Por otro lado, el uso de nanopartículas con fines analíticos ha demostrado mejorar la sensibilidad y límites de detección de métodos ópticos. Así, esta tesis se centra en el desarrollo de microsistemas analíticos automatizados que llevan a cabo análisis colorimétricos o fluorimétricos, basados en el uso de nanopartículas como marcadores ópticos, para la rápida detección de analitos o microorganismos de contaminación hídrica, tales como metales pesados o bacterias. Sin embargo, es necesario utilizar nanopartículas con idénticas características físicas para obtener medidas analíticas fiables. Así, la primera parte de este trabajo abarca el desarrollo de microreactores para la síntesis controlada y reproducible de nanopartículas metálicas, semiconductoras y de carbono. Se muestran un total de siete microreactores, en los que se ha realizado un estudio de los parámetros de diseño e hidrodinámicos. Además, se ha implementado un sistema de detección óptica miniaturizado para la monitorización en línea de la síntesis; y se ha desarrollado un módulo térmico que permite alcanzar y controlar temperaturas de hasta 300 ºC para aquellas reacciones que lo requieran. Es de destacar que los microsistemas trabajan de forma automática y programable, lo cual simplifica el procedimiento de síntesis y mejora la reproducibilidad de las nanopartículas obtenidas. La segunda parte del trabajo se centra en el desarrollo de microsistemas analíticos basados en la utilización de las nanopartículas sintetizadas para el análisis de algún parámetro de la calidad del agua. Se han construido y evaluado dos prototipos. El primero de ellos está diseñado para la monitorización de ión mercurio en agua. El sistema se basa en el reconocimiento selectivo del analito mediante un ionóforo (un derivado de la tiourea) unido a la superficie de nanopartículas de oro. La interacción metal-ionóforo provoca un cambio en la banda del plasmón superficial de las nanopartículas, generando una señal óptica cuantificable que se registra en línea mediante un sistema óptico integrado en la plataforma microfluídica. Una vez optimizado, el dispositivo es capaz de detectar hasta 11 ppb de mercurio(II). Finalmente, y como primera aproximación al uso de nanopartículas fluorescentes en microsistemas, se ha desarrollado un prototipo para la determinación de Escherichia coli en agua utilizando como marcador la enzima β-galactosidasa. Este cambio responde a la necesidad de mejorar el sistema óptico miniaturizado (manteniendo su portabilidad y bajo coste), debido a la baja sensibilidad observada cuando nanopartículas fluorescentes fueron usadas como marcadores. El dispositivo desarrollado lleva a cabo un ensayo tipo sándwich de oligonucleótidos, dónde se emplea como sonda diana un oligonucleótido específico del patógeno. El uso de micropartículas magnéticas como sustrato soporte del ensayo permite simplificar y mejorar las distintas etapas del análisis, mientras que el enzima usado como marcador de la sonda de reconocimiento genera un producto coloreado al añadir el sustrato, registrado mediante el sistema óptico miniaturizado implementado. Tras su optimización, es posible detectar 1 ppb de la sonda diana en 20 minutos. Los resultados presentados en este trabajo muestran el gran potencial de los microsistemas analíticos automatizados basados en el uso de nanopartículas para monitorizar la calidad del agua. Se ha demostrado también la idoneidad de los microreactores para la síntesis de nanopartículas.
展开▼