首页> 外文OA文献 >ANCシステムにおけるオンライン2次経路とフィードバック経路モデリングのための補助ノイズ電力スケジューリングに関する研究
【2h】

ANCシステムにおけるオンライン2次経路とフィードバック経路モデリングのための補助ノイズ電力スケジューリングに関する研究

机译:ANC系统在线辅助路径和反馈路径建模的辅助噪声功率调度研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The idea of cancelling the acoustic noise by generating an anti-noise signal is very fascinating, and was first proposed by P. Lueg in 1936. In feedforward active noise control (ANC) systems, the anti-noise signal is generated with the help of reference and error microphones, an adaptive filtered-x-LMS (FxLMS) algorithm based ANC filter, and an electro-acoustic path named as the secondary path. For stable operation of ANC systems, the FxLMS algorithm needs an estimate of the secondary path. The anti-noise signal generated by the loudspeaker (part of secondary path) causes interference with the reference microphone signal. This interference is due to the presence of electro-acoustic path, named as feedback path, between the loudspeaker and the reference microphone. It is required to neutralize the effect of this feedback path, and hence an estimate of the feedback path is required. For online modeling of the secondary and feedback paths, an additional auxiliary noise is injected. This auxiliary noise contributes to the residual error, and thus degrades the noise-reduction-performance (NRP) of ANC system. In order to improve the NRP, a gain scheduling strategy is used to vary the variance of the injected auxiliary noise. The purpose of the gain scheduling is that when the model estimates of the secondary and the feedback paths are far from the actual unknown paths, auxiliary noise with large variance is injected. Once the model estimates are closer to the actual unknown paths, the variance of auxiliary noise is reduced to a small value. In this way, on one hand the gain scheduling can help us to achieve the required model estimates of secondary and feedback paths, and on the other hand to improve the NRP at the steady-state. In this thesis, we discuss the two most important issues, i.e., 1) online secondary path modeling (OSPM), and 2) online feedback path modeling and neutralization (FBPMN) with gain scheduling. In chapter 1, the basic underlying physical principle and configurations of active noise control (ANC) systems are explained. The application of the basic building block of an ANC system i.e. An adaptive filter, in different system identification scenarios is discussed. The most popular adaptive algorithm for ANC system, i.e., FxLMS algorithm is derived for the general secondary path. A brief overview is given for the two fundamental issues in ANC systems, i.e., 1) OSPM and 2) online FBPMN. The use of optimal excitation signal, i.e., Perfect sweep signals for system identification is described. In chapter 2, the existing methods for OSPM without gain scheduling, where the auxiliary noise with fixed variance is used in all operating conditions, are discussed. In this chapter a simplified structure for OSPM with the modified FxLMS (MFxLMS) adaptive algorithm is proposed. The advantage of the simplified structure is that it reduces the computational complexity of the MFxLMS algorithm based OSPM without having any compromise on the performance of ANC system. In chapter 3, the existing methods for OSPM with gain scheduling are discussed. The drawbacks with the existing gain scheduling strategies are highlighted, and some new gain scheduling strategies are proposed to improve the modeling accuracy of SPM filter and the NRP of an ANC system. In existing methods, the gain is varied based on the power of residual error signal which carries information only about the convergence status of ANC system. In the Proposed methods the gain is varied based on the power of error signal of SPM filter. This is more desirable way of controlling the gain because the power of error signal of SPM filter carries information about the convergence status of both the ANC system and the SPM filter. The performance comparison is carried out through the simulation results. In chapter 4, the second most important issue associated with the feedforward configuration of ANC system, i.e., the issue of online FBPMN is deal with. In the first part, the existing methods for online FBPMN without gain scheduling are discussed. A new structure is proposed for online FBPMN without gain scheduling. The performance of the existing methods is compare with the proposed method through the simulation results. In the new structure the good features from the existing structures are combined together. The predictor is used in the new structure to remove the predictable interference term from the error signal of adaptive FBPMN filter. In addition to this, the action of FBPM filter and the FBPN filter is combined into a single FBPMN filter. The advantage of the new structure over the existing structures is that it can better neutralize the effect of feedback coupling on the input signal of ANC filter, thus improves the convergence of ANC system. In the second part, a gain scheduling strategy is proposed to improve the NRP of ANC system. In addition to this, a self-tuned ANP scheduling strategy with matching step-size for FBPMN filter is also proposed that requires no tuning parameters and further improves the NRP of ANC systems. In chapter 5, the concluding remarks and some future research directions are given.
机译:P. Lueg于1936年首先提出通过产生抗噪声信号消除声噪声的想法。在前馈有源噪声控制(ANC)系统中,抗噪声信号是通过以下方式产生的:参考和误差传声器,基于自适应滤波x-LMS(FxLMS)算法的ANC滤波器以及称为次要路径的电声路径。为了使ANC系统稳定运行,FxLMS算法需要估算辅助路径。扬声器(辅助路径的一部分)产生的抗噪信号会引起对参考麦克风信号的干扰。这种干扰是由于扬声器和参考麦克风之间存在电声路径(称为反馈路径)引起的。需要抵消该反馈路径的影响,因此需要反馈路径的估计。对于辅助路径和反馈路径的在线建模,会注入额外的辅助噪声。这种辅助噪声会导致残留误差,从而降低ANC系统的降噪性能(NRP)。为了改善NRP,使用增益调度策略来改变注入的辅助噪声的方差。增益调度的目的是,当次级路径和反馈路径的模型估计值与实际未知路径相距甚远时,将注入方差较大的辅助噪声。一旦模型估计值更接近实际的未知路径,辅助噪声的方差就会减小到很小的值。这样,一方面增益调度可以帮助我们获得所需的辅助路径和反馈路径的模型估计,另一方面可以改善稳态下的NRP。在本文中,我们讨论了两个最重要的问题,即:1)在线次级路径建模(OSPM),以及2)具有增益调度的在线反馈路径建模和中和(FBPMN)。在第一章中,将介绍有源噪声控制(ANC)系统的基本基本物理原理和配置。讨论了ANC系统的基本构件即自适应滤波器在不同系统识别场景中的应用。 ANC系统中最流行的自适应算法,即FxLMS算法,是针对一般辅助路径而派生的。简要概述了ANC系统中的两个基本问题,即1)OSPM和2)在线FBPMN。描述了最佳激励信号,即用于系统识别的完美扫描信号的使用。在第2章中,讨论了不带增益调度的OSPM的现有方法,其中在所有工作条件下都使用具有固定方差的辅助噪声。在本章中,提出了一种采用改进的FxLMS(MFxLMS)自适应算法的OSPM简化结构。简化结构的优势在于,它可以降低基于MFxLMS算法的OSPM的计算复杂度,而不会影响ANC系统的性能。第三章讨论了带增益调度的OSPM现有方法。突出了现有增益调度策略的弊端,提出了一些新的增益调度策略,以提高SPM滤波器和ANC系统NRP的建模精度。在现有方法中,增益是基于残余误差信号的功率而变化的,该误差信号仅携带有关ANC系统收敛状态的信息。在提出的方法中,增益是根据SPM滤波器的误差信号的功率而变化的。这是控制增益的更理想的方式,因为SPM滤波器的误差信号的功率会携带有关ANC系统和SPM滤波器的收敛状态的信息。通过仿真结果进行性能比较。在第4章中,讨论了与ANC系统的前馈配置有关的第二个最重要的问题,即在线FFBPN问题。在第一部分中,讨论了不进行增益调度的在线FBPMN的现有方法。提出了一种无需增益调度的在线FBPMN的新结构。仿真结果将现有方法的性能与提出的方法进行了比较。在新结构中,现有结构的良好功能被组合在一起。在新结构中使用了预测器,以从自适应FBPMN滤波器的误差信号中去除可预测的干扰项。除此之外,FBPM过滤器和FBPN过滤器的作用被组合为单个FBPMN过滤器。与现有结构相比,新结构的优点是可以更好地抵消反馈耦合对ANC滤波器输入信号的影响,从而提高ANC系统的收敛性。在第二部分中,提出了一种增益调度策略,以提高ANC系统的NRP。除此之外提出了一种无需调整参数就可匹配FBPMN滤波器的步长匹配的自调整ANP调度策略,进一步提高了ANC系统的NRP。第五章给出了总结性结论和今后的研究方向。

著录项

  • 作者

    Ahmed Shakeel;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号