首页> 外文OA文献 >ベイジアンネットワークにおける確率推論の高速化のための最適三角化アルゴリズムの提案
【2h】

ベイジアンネットワークにおける確率推論の高速化のための最適三角化アルゴリズムの提案

机译:贝叶斯网络中加速概率推理的最佳三角剖分算法的建议

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bayesian networks are widely used probabilistic graphical models that provide a compact representation of joint probability distributions over a set of variables. A common inference task in Bayesian networks is to compute the posterior marginal distributions for the unobserved variables given some evidence variables that we have already observed. However, the inference problem is known to be NP-hard and this complexity of inference limits the usage of Bayesian networks. Many attempts to improve the inference algorithm have been made in the past two decades. Currently, the junction tree algorithm is among the most prominent exact inference algorithms. To perform efficient inference on a Bayesian network using the junction tree algorithm, it is necessary to find a triangulation of the moral graph of the Bayesian network such that the total table size is small. In this context, the total table size is used to measure the computational complexity of the junction tree inference algorithm. This thesis focuses on exact algorithms for finding a triangulation that minimizes the total table size for a given Bayesian network. For optimal triangulation, Ottosen and Vomlel have proposed a depth-first search (DFS) algorithm. They also introduced several techniques to improve the DFS algorithm, including dynamic clique maintenance and coalescing map pruning. Nevertheless, the efficiency and scalability of their algorithm leave much room for improvement. First, the dynamic clique maintenance allows the recomputation of some cliques. Second, for a Bayesian network with n variables, the DFS algorithm runs in O*(n!) time because it explores a search space of all elimination orders. To mitigate these problems, an extended depth-first search (EDFS) algorithm is proposed in this thesis. The new EDFS algorithm introduces two techniques: (1) a new dynamic clique maintenance algorithm that computes only those cliques that contain a new edge, and (2) a new pruning rule, called pivot clique pruning. The new dynamic clique maintenance algorithm explores a smaller search space and runs faster than the Ottosen and Vomlel approach. This improvement can decrease the overhead cost of the DFS algorithm, and the pivot clique pruning reduces the size of the search space by a factor of O(n2). Our empirical results show that our proposed algorithm finds an optimal triangulation markedly faster than the state-of-the-art algorithm does.
机译:贝叶斯网络是广泛使用的概率图形模型,它提供了一组变量上联合概率分布的紧凑表示。贝叶斯网络中一个常见的推理任务是给定一些我们已经观察到的证据变量,为未观察到的变量计算后验边际分布。然而,已知推理问题是NP难的,并且推理的这种复杂性限制了贝叶斯网络的使用。在过去的二十年中,人们进行了许多改进推理算法的尝试。当前,连接树算法是最突出的精确推理算法之一。为了使用连接树算法在贝叶斯网络上执行有效的推断,有必要找到贝叶斯网络的道德图的三角剖分,使得总表大小较小。在这种情况下,表的总大小用于度量联结树推断算法的计算复杂性。本文重点研究用于找到三角剖分的精确算法,该三角剖分最小化给定贝叶斯网络的总表大小。为了获得最佳的三角剖分,Ottosen和Vomlel提出了深度优先搜索(DFS)算法。他们还介绍了几种改进DFS算法的技术,包括动态集团维护和合并地图修剪。尽管如此,他们算法的效率和可扩展性仍有很大的改进空间。首先,动态集团维护允许对某些集团进行重新计算。其次,对于具有n个变量的贝叶斯网络,DFS算法以O *(n!)时间运行,因为它探索了所有消除顺序的搜索空间。为了缓解这些问题,本文提出了一种扩展的深度优先搜索算法。新的EDFS算法引入了两种技术:(1)新的动态集团维护算法,该算法仅计算包含新边的那些集团,以及(2)新的修剪规则,称为枢轴集团修剪。新的动态团簇维护算法比Ottosen和Vomlel方法探索的搜索空间更小且运行速度更快。这种改进可以减少DFS算法的开销成本,并且枢纽集团修剪将搜索空间的大小减少了O(n2)。我们的实验结果表明,我们提出的算法找到最佳三角剖分的速度明显快于最新算法。

著录项

  • 作者

    李 超; Chao Li;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号