首页> 外文OA文献 >Design and modelling of optimal driveline control strategy for an electric racing car with rear in-line motors
【2h】

Design and modelling of optimal driveline control strategy for an electric racing car with rear in-line motors

机译:具有后置直列电动机的电动赛车的最佳传动系统控制策略的设计和建模

摘要

Interest in electric vehicles (EVs) has increased rapidly over recent years from both industrial and academic viewpoints due to increasing concerns about environmental pollution and global oil usage. In the automotive sector, huge efforts have been invested in vehicle technology to improve efficiency and reduce carbon emissions with, for example, electric vehicles. Nowadays, the safety and handling of electric vehicles present new tasks for vehicle dynamics engineers due to the changes in weight distribution and vehicle architecture. This thesis focuses on one design area of the electric vehicle – torque vectoring control – with the aim of investigating the potential benefits of improved vehicle dynamics and handling for EVs. A full electric racing car kit developed by Westfield Sportcars based on an in-line motors design has been modelled in ADAMS with typical subsystems, and then simulated with computer-based kinematic and dynamic analyses. Thus, the characteristics of the suspensions and the natural frequencies of the sprung and unsprung masses were found, so that the model was validated for further simulation and investigation. Different architectures of the EVs, namely the in-line motors and the in-wheel motors, are compared using objective measurements. The objective measurements predicted with kinematics, dynamics and handling analyses confirm that the architecture of the in-line motors provides a superior dynamics performance for ride and driveability. An Optimal Driveline Control Strategy (ODCS) based on the concept of individual wheel control is designed and its performance is compared with the more common driveline used successfully in the past. The research challenge is to investigate the optimisation of the driving torque outputs to control the vehicle and provide the desired vehicle dynamics. The simulation results confirm that active yaw control is indeed achievable. The original aspects of this work include defining the characteristics and linearity of the project vehicle using a novel consideration of yaw rate gain; the design and development the Optimal Driveline Control Strategy (ODCS); the analysis and modelling the ODCS in the vehicle and the comparison of the results with conventional drivelines. The work has demonstrated that valuable performance benefits result from using optimal torque vectoring control for electric vehicle.
机译:由于对环境污染和全球石油使用的关注增加,从工业和学术角度看,近年来对电动汽车(EV)的兴趣已迅速增加。在汽车领域,已经在汽车技术上进行了巨大的努力,以提高效率并减少例如电动汽车的碳排放。如今,由于重量分布和车辆结构的变化,电动汽车的安全性和操纵性为汽车动力学工程师带来了新的任务。本文主要研究电动汽车的一个设计领域-扭矩矢量控制-旨在研究改善电动汽车的动态性能和操纵性能的潜在好处。由Westfield Sportcars基于在线电机设计开发的全电动赛车套件已在ADAMS中使用典型子系统建模,然后通过基于计算机的运动学和动力学分析进行了仿真。因此,发现了悬架的特性以及悬架和悬架质量的固有频率,从而对该模型进行了验证,以进行进一步的仿真和研究。使用客观测量结果比较电动汽车的不同架构,即直列式电动机和轮式电动机。通过运动学,动力学和操纵分析预测的客观测量结果证实,直列式电动机的体系结构可为驾乘和驾驶提供出色的动力学性能。设计了基于单个车轮控制概念的最佳传动系控制策略(ODCS),并将其性能与过去成功使用的更常见的传动系进行了比较。研究挑战是研究驱动扭矩输出的优化,以控制车辆并提供所需的车辆动力。仿真结果证实了主动偏航控制的确是可以实现的。这项工作的原始方面包括使用新的偏航角速度增益来定义项目车辆的特性和线性度。设计和开发最佳动力传动系统控制策略(ODCS);车辆中的ODCS的分析和建模,以及与常规传动系统的比较结果。这项工作表明,通过对电动汽车使用最佳转矩矢量控制,可以获得宝贵的性能优势。

著录项

  • 作者

    Guo M.;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号