首页> 外文OA文献 >Identifying landscape features associated with Rift Valley fever virus transmission, Ferlo region, Senegal, using very high spatial resolution satellite imager
【2h】

Identifying landscape features associated with Rift Valley fever virus transmission, Ferlo region, Senegal, using very high spatial resolution satellite imager

机译:使用非常高分辨率的卫星成像仪识别与塞内加尔费罗地区的裂谷热病毒传播相关的景观特征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Introduction: Dynamics of most of vector-borne diseases are strongly linked to global and local environmental changes. Landscape changes are indicators of human activities or natural processes that are likely to modify the ecology of the diseases. Here, a landscape approach developed at a local scale is proposed for extracting mosquito favourable biotopes, and for testing ecological parameters when identifying risk areas of Rift Valley fever (RVF) transmission. The study was carried out around Barkedji village, Ferlo region, Senegal. Methods: In order to test whether pond characteristics may influence the density and the dispersal behaviour of RVF vectors, and thus the spatial variation in RVFV transmission, we used a very high spatial resolution remote sensing image (2.4 m resolution) provided by the Quickbird sensor to produce a detailed land-cover map of the study area. Based on knowledge of vector and disease ecology, seven landscape attributes were defined at the pond level and computed from the land-cover map. Then, the relationships between landscape attributes and RVF serologic incidence rates in small ruminants were analyzed through a beta-binomial regression. Finally, the best statistical model according to the Akaike Information Criterion corrected for small samples (AICC), was used to map areas at risk for RVF. Results: Among the derived landscape variables, the vegetation density index (VDI) computed within a 500 m buffer around ponds was positively correlated with serologic incidence (p0.001), suggesting that the risk of RVF transmission was higher in the vicinity of ponds surrounded by a dense vegetation cover. The final risk map of RVF transmission displays a heterogeneous spatial distribution, corroborating previous findings from the same area. Conclusions: Our results highlight the potential of very high spatial resolution remote sensing data for identifying environmental risk factors and mapping RVF risk areas at a local scale. (Résumé d'auteur)
机译:简介:大多数媒介传播疾病的动态与全球和局部环境变化密切相关。景观变化是可能改变疾病生态的人类活动或自然过程的指示。在这里,提出了一种在当地范围内开发的景观方法,用于提取有利于蚊子的生物群落,并在识别裂谷热(RVF)传播的危险区域时测试生态参数。这项研究是在塞内加尔费罗地区的Barkedji村周围进行的。方法:为了测试池塘特征是否会影响RVF向量的密度和扩散行为,进而影响RVFV传播的空间变化,我们使用了Quickbird传感器提供的非常高分辨率的遥感影像(2.4 m分辨率)绘制研究区域的详细土地覆盖图。基于病媒和疾病生态学的知识,在池塘一级定义了七个景观属性,并根据土地覆盖图进行了计算。然后,通过β-二项式回归分析了小型反刍动物的景观属性与RVF血清学发生率之间的关系。最后,根据对小样本进行校正的Akaike信息准则(AICC)的最佳统计模型,可以绘制出存在RVF风险的区域。结果:在导出的景观变量中,池塘周围500 m缓冲区内计算出的植被密度指数(VDI)与血清学发生率呈正相关(p <0.001),这表明在周围池塘周围,RVF传播的风险更高被茂密的植被覆盖。 RVF传播的最终风险图显示出异质的空间分布,证实了同一地区以前的发现。结论:我们的结果突出了非常高分辨率的遥感数据在识别环境风险因素和在当地范围内绘制RVF风险区域的潜力。 (Résuméd'auteur)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号