首页> 外文OA文献 >Mapping Averaged Pairwise Information (MAPI): A new exploratory tool to uncover spatial structure
【2h】

Mapping Averaged Pairwise Information (MAPI): A new exploratory tool to uncover spatial structure

机译:映射平均成对信息(MAPI):一种探索空间结构的新探索工具

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Visualisation of spatial networks based on pairwise metrics such as (dis)similarity coefficients provides direct information on spatial organisation of biological systems. However, for large networks, graphical representations are often unreadable as nodes (samples), and edges (links between samples) strongly overlap. We present a new method, MAPI, allowing translation from spatial networks to variation surfaces. MAPI relies on (i) a spatial network in which samples are linked by ellipses and (ii) a grid of hexagonal cells encompassing the study area. Pairwise metric values are attributed to ellipses and averaged within the cells they intersect. The resulting surface of variation can be displayed as a colour map in Geographical Information System (GIS), along with other relevant layers, such as land cover. The method also allows the identification of significant discontinuities in grid cell values through a nonparametric randomisation procedure. The interest of MAPI is here demonstrated in the field of spatial and landscape genetics. Using simulated test data sets, as well as observed data from three biological models, we show that MAPI is (i) relatively insensitive to confounding effects resulting from isolation by distance (i.e. over-structuring), (ii) efficient in detecting barriers when they are not too permeable to gene flow and, (iii) useful to explore relationships between spatial genetic patterns and landscape features. MAPI is freely provided as a PostgreSQL/PostGIS data base extension allowing easy interaction with GIS or the r software and other programming languages. Although developed for spatial and landscape genetics, the method can also be useful to visualise spatial organisation from other kinds of data from which pairwise metrics can be computed. (Résumé d'auteur)
机译:基于成对度量(例如(非)相似系数)的空间网络可视化可提供有关生物系统空间组织的直接信息。但是,对于大型网络,图形表示通常不可读,因为节点(样本)和边缘(样本之间的链接)强烈重叠。我们提出了一种新的方法MAPI,它允许从空间网络到变化表面的转换。 MAPI依赖于(i)一个空间网络,其中样本通过椭圆连接,并且(ii)围绕研究区域的六角形细胞网格。成对度量值归因于椭圆并在它们相交的像元内取平均值。所产生的变化表面可以与其他相关图层(例如土地覆盖)一起在地理信息系统(GIS)中显示为彩色地图。该方法还允许通过非参数随机程序识别网格单元值中的显着不连续性。 MAPI的兴趣在空间和景观遗传学领域得到了证明。使用模拟的测试数据集以及来自三个生物学模型的观察数据,我们表明MAPI(i)对通过距离隔离(即,过度构建)而导致的混杂效应相对不敏感,(ii)在检测障碍时有效不能很好地渗透基因流,(iii)有助于探索空间遗传模式与景观特征之间的关系。 MAPI作为PostgreSQL / PostGIS数据库扩展免费提供,允许与GIS或r软件和其他编程语言轻松交互。尽管针对空间和景观遗传学而开发,但该方法也可用于可视化其他类型数据的空间组织,从中可以计算成对度量。 (Résuméd'auteur)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号