首页> 外文OA文献 >Crop classification by a support vector machine with intelligently selected training data for an operational application
【2h】

Crop classification by a support vector machine with intelligently selected training data for an operational application

机译:支持向量机对作物进行分类,并针对操作应用智能选择训练数据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The accuracy of supervised classification is dependent to a large extent on the training data used. The aim is often to capture a large training set to fully describe the classes spectrally, commonly with the requirements of a conventional statistical classifier in-mind. However, it is not always necessary to provide a complete description of the classes, especially if using a support vector machine (SVM) as the classifier. A SVM seeks to fit an optimal hyperplane between the classes and uses only some of the training samples that lie at the edge of the class distributions in feature space (support vectors). This should allow the definition of the most informative training samples prior to the analysis. An approach to identify informative training samples was demonstrated for the classification of agricultural classes in south-western part of Punjab state, India. A small, intelligently selected, training data set was acquired in the field with the aid of ancillary information. This data set contained the data from training sites that were predicted before the classification to be amongst the most informative for a SVM classification. The intelligent training collection scheme yielded a classification of comparable accuracy, ~91%, to one derived using a larger training set acquired by a conventional approach. Moreover, from inspection of the training sets it was apparent that the intelligently defined training set contained a greater proportion of support vectors (0.70), useful training sites, than that acquired by the conventional approach (0.41). By focusing on the most informative training samples, the intelligent scheme required less investment in training than the conventional approach and its adoption would have reduced total financial outlay in classification production and evaluation by ~26%. Additionally, the analysis highlighted the possibility to further reduce the training set size without any significant negative impact on classification accuracy.
机译:监督分类的准确性在很大程度上取决于所使用的训练数据。通常,目的是捕获大型训练集,以在频谱上全面描述类,通常是出于对常规统计分类器的要求。但是,并非总是需要提供类的完整描述,尤其是在使用支持向量机(SVM)作为分类器的情况下。 SVM试图在类之间拟合最佳超平面,并且仅使用位于特征空间(支持向量)中类分布边缘的一些训练样本。这应该允许在分析之前定义最有用的培训样本。在印度旁遮普邦西南部地区,一种用于识别信息培训样本的方法已被证明可用于对农业类别进行分类。借助辅助信息,在现场获取了一个小型的,经过智能选择的训练数据集。该数据集包含来自培训地点的数据,这些数据在分类之前被预测为SVM分类中最有用的信息。智能训练收集方案得出的分类精度与使用传统方法获得的更大训练集得出的分类精度相当,约为91%。此外,从对训练集的检查中可以明显看出,与传统方法(0.41)相比,智能定义的训练集包含更多比例的支持向量(0.70)和有用的训练位置。通过专注于提供最多信息的培训样本,与传统方法相比,智能计划在培训上的投资更少,并且采用该计划将使分类生产和评估中的总财务支出减少约26%。此外,分析强调了进一步减少训练集大小而又不会对分类准确性产生任何重大负面影响的可能性。

著录项

  • 作者

    Mathur Ajay; Foody Giles M.;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号