首页> 外文OA文献 >Influence of the underneath cavity on buoyant-forced cooling of the integrated photovoltaic panels in building roof: a thermography study
【2h】

Influence of the underneath cavity on buoyant-forced cooling of the integrated photovoltaic panels in building roof: a thermography study

机译:下腔对建筑物屋顶集成光伏面板的浮力强制冷却的影响:热成像研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Airflow around building-integrated photovoltaics (BIPV) has a significant impact on their hygrothermal behavior and degradation. The potential of reducing the temperature of BIPV using an underneath cavity is experimentally and numerically investigated in literature. Most of the models are oversimplified in terms of modeling the impact of 3D flow over/underneath of PV modules, which can result in a non-uniform surface temperature and consequently a non-homogenous thermal degradation. Moreover, the simultaneous presence of radiation and convection related to upstream wind, in addition to the combined impact of back-ventilation and surface convection, is barely addressed in literature. However, these simplifications can result in the unrealistic loading climate conditions. This paper aims to present a unique experimental setup to provide more realistic climate conditions for investigating the ventilation potential of the underneath. The setup consists of a solar simulator and a building prototype with installed PV, placed inside an atmospheric wind tunnel to control upstream wind velocity. Thermography is performed using an infrared camera to monitor the surface temperature of the BIPV. The potential of an underneath cavity with various cavity heights and PV arrangement is further investigated in this paper. The outcome would be eventually useful in the development of practical guidelines for BIPV installation. Copyright © 2013 John Wiley & Sons, Ltd.
机译:建筑物集成光伏(BIPV)周围的气流对其吸湿行为和降解具有重大影响。在文献中通过实验和数值研究了使用下腔降低BIPV温度的潜力。大多数模型在对3D流动在PV模块上方/下方的影响进行建模时都过分简化,这可能会导致表面温度不均匀,从而导致不均匀的热降解。此外,除了逆向通风和表面对流的综合影响外,与上游风有关的辐射和对流的同时存在,在文献中几乎没有得到解决。但是,这些简化可能导致不切实际的装载气候条件。本文旨在提出一种独特的实验装置,以提供更现实的气候条件,以调查下方的通风潜力。该设置包括一个太阳模拟器和一个安装了PV的建筑原型,该原型放置在大气风洞中以控制上游风速。使用红外热像仪进行热成像,以监控BIPV的表面温度。本文进一步研究了具有不同腔高和PV排列的下腔的潜力。该结果最终将对BIPV安装的实用指南的开发有用。版权所有©2013 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号