首页> 外文OA文献 >How far are we from solving the 2D 3D face alignment problem? (and a dataset of 230,000 3D facial landmarks)
【2h】

How far are we from solving the 2D 3D face alignment problem? (and a dataset of 230,000 3D facial landmarks)

机译:我们距离解决2D和3D人脸对齐问题还有多远? (以及230,000个3D面部地标的数据集)

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper investigates how far a very deep neural network is from attaining close to saturating performance on existing 2D and 3D face alignment datasets. To this end, we make the following 5 contributions: (a) we construct, for the first time, a very strong baseline by combining a state-of-the-art architecture for landmark localization with a state-of-the-art residual block, train it on a very large yet synthetically expanded 2D facial landmark dataset and finally evaluate it on all other 2D facial landmark datasets. (b)We create a guided by 2D landmarks network which converts 2D landmark annotations to 3D and unifies all existing datasets, leading to the creation of LS3D-W, the largest and most challenging 3D facial landmark dataset to date (~230,000 images). (c) Following that, we train a neural network for 3D face alignment and evaluate it on the newly introduced LS3D-W. (d) We further look into the effect of all “traditional” factors affecting face alignment performance like large pose, initialization and resolution, and introduce a “new” one, namely the size of the network. (e) We show that both 2D and 3D face alignment networks achieve performance of remarkable accuracy which is probably close to saturating the datasets used. Training and testing code as well as the dataset can be downloaded from https: //www.adrianbulat.com/face-alignment/
机译:本文研究了现有的2D和3D人脸对齐数据集上非常深的神经网络离达到接近饱和性能还有多远。为此,我们做出了以下五点贡献:(a)通过结合用于地标定位的最新架构和最新残差,首次构建了非常强大的基线块,在一个非常大但合成扩展的2D面部界标数据集上进行训练,最后在所有其他2D面部界标数据集上对其进行评估。 (b)我们创建了一个由2D地标网络引导的网络,该网络将2D地标注释转换为3D并统一所有现有数据集,从而创建了LS3D-W,这是迄今为止最大和最具挑战性的3D面部地标数据集(约230,000张图像)。 (c)之后,我们训练用于3D人脸对齐的神经网络,并在新推出的LS3D-W上对其进行评估。 (d)我们进一步研究所有影响面部对齐性能的“传统”因素(例如大姿态,初始化和分辨率)的影响,并引入“新”因素,即网络的规模。 (e)我们证明2D和3D人脸对齐网络均具有非常出色的精度,这可能接近饱和所使用的数据集。培训和测试代码以及​​数据集可以从以下网址下载:https://www.adrianbulat.com/face-alignment/

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号