首页> 外文OA文献 >Using tree detection algorithms to predict stand sapwood area, basal area and stocking density in Eucalyptus regnans forest
【2h】

Using tree detection algorithms to predict stand sapwood area, basal area and stocking density in Eucalyptus regnans forest

机译:利用树木检测算法预测桉树林的边材边材面积,基础面积和放养密度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Managers of forested water supply catchments require efficient and accurate methods to quantify changes in forest water use due to changes in forest structure and density after disturbance. Using Light Detection and Ranging (LiDAR) data with as few as 0.9 pulses m⁻², we applied a local maximum filtering (LMF) method and normalised cut (NCut) algorithm to predict stocking density (S) of a 69-year-old Eucalyptus regnans forest comprising 251 plots with resolution of the order of 0.04 ha. Using the NCut method we predicted basal area (BA) per hectare and sapwood area (SA) per hectare, a well-established proxy for transpiration. Sapwood area was also indirectly estimated with allometric relationships dependent on LiDAR derived S and BA using a computationally efficient procedure. The individual tree detection (ITD) rates for the LMF and NCut methods respectively had 72% and 68% of stems correctly identified, 25% and 20% of stems missed, and 2% and 12% of stems over-segmented. The significantly higher computational requirement of the NCut algorithm makes the LMF method more suitable for predicting S across large forested areas. Using NCut derived ITD segments, observed versus predicted stand BA had R² ranging from 0.70 to 0.98 across six catchments, whereas a generalised parsimonious model applied to all sites used the portion of hits greater than 37 m in height (PH₃₇) to explain 68% of BA. For extrapolating one ha resolution SA estimates across large forested catchments, we found that directly relating SA to NCut derived LiDAR indices (R² = 0.56) was slightly more accurate but computationally more demanding than indirect estimates of SA using allometric relationships consisting of BA (R² = 0.50) or a sapwood perimeter index, defined as (BAS) (R² = 0.48).
机译:森林供水集水区的管理者需要有效而准确的方法来量化由于扰动后森林结构和密度的变化而引起的森林用水的变化。使用光检测和测距(LiDAR)数据(少至0.9个脉冲m⁻²),我们应用了局部最大滤波(LMF)方法和归一化切割(NCut)算法来预测69岁的老人的放养密度(S)包括251个样地,分辨率为0.04公顷的雷加尔桉树森林。使用NCut方法,我们可以预测每公顷的基础面积(BA)和每公顷的边材面积(SA),这是一种公认​​的蒸腾替代物。利用计算效率高的方法,还可以根据与LiDAR衍生的S和BA的异形关系间接估算边材面积。 LMF和NCut方法的单独树检测(ITD)率分别正确识别了72%和68%的茎,错失了25%和20%的茎,以及过分分割的2%和12%的茎。 NCut算法的显着更高的计算要求使LMF方法更适合于预测大森林区域中的S。使用NCut衍生的ITD区段,观察到的林分BA与六个集水区的R²值在0.70至0.98之间,而适用于所有场所的广义简约模型使用命中高度大于37 m(PH₃₇)的部分来解释68%的撞击。爸为了推断大型森林集水区的SA估计值,我们发现将SA与NCut得出的LiDAR指数直接相关(R²= 0.56)比使用由BA(R²= 0.50)或边材周界指数,定义为(BAS)(R²= 0.48)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号