首页> 外文OA文献 >A limited-memory acceleration strategy for MCMC sampling in hierarchical Bayesian calibration of hydrological models
【2h】

A limited-memory acceleration strategy for MCMC sampling in hierarchical Bayesian calibration of hydrological models

机译:贝叶斯水文模型分级贝叶斯标定中MCMC采样的有限内存加速策略

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hydrological calibration and prediction using conceptual models is affected by forcing/response data uncertainty and structural model error. The Bayesian Total Error Analysis methodology uses a hierarchical representation of individual sources of uncertainty. However, it is shown that standard multiblock “Metropolis-within-Gibbs” Markov chain Monte Carlo (MCMC) samplers commonly used in Bayesian hierarchical inference are exceedingly computationally expensive when applied to hydrologic models, which use recursive numerical solutions of coupled nonlinear differential equations to describe the evolution of catchment states such as soil and groundwater storages. This note develops a “limited-memory” algorithm for accelerating multiblock MCMC sampling from the posterior distributions of such models using low-dimensional jump distributions. The new algorithm exploits the decaying memory of hydrological systems to provide accurate tolerance-based approximations of traditional “full-memory” MCMC methods and is orders of magnitude more efficient than the latter.
机译:使用概念模型的水文校准和预测受强迫/响应数据不确定性和结构模型误差的影响。贝叶斯总误差分析方法使用不确定性的各个来源的分层表示。然而,事实表明,贝叶斯层次推论中常用的标准多块“大都市内吉布斯”马尔可夫链蒙特卡洛(MCMC)采样器在应用于水文模型时在计算上极其昂贵,该模型使用耦合非线性微分方程的递归数值解来求解。描述流域状态的演变,例如土壤和地下水的存储。本说明开发了一种“有限内存”算法,用于使用低维跳跃分布从此类模型的后验分布加速多块MCMC采样。新算法利用水文系统的衰减记忆来提供传统“全内存” MCMC方法的基于容差的精确近似,并且比后者效率高出几个数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号