首页> 外文OA文献 >Advantages of Task-Specific Multi-Objective Optimisation in Evolutionary Robotics
【2h】

Advantages of Task-Specific Multi-Objective Optimisation in Evolutionary Robotics

机译:特定任务多目标优化在进化机器人中的优势

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The application of multi-objective optimisation to evolutionary robotics is receiving increas- ing attention. A survey of the literature reveals the different possibilities it offers to improve the automatic design of efficient and adaptive robotic systems, and points to the successful demonstrations available for both task-specific and task-agnostic approaches (i.e., with or without reference to the specific design problem to be tackled). However, the advantages of multi-objective approaches over single-objective ones have not been clearly spelled out and experimentally demonstrated. This paper fills this gap for task-specific approaches: starting from well-known results in multi-objective optimisation, we discuss how to tackle commonly recognised problems in evolutionary robotics. In particular, we show that multi- objective optimisation (i) allows evolving a more varied set of behaviours by exploring multi- ple trade-offs of the objectives to optimise, (ii) supports the evolution of the desired behav- iour through the introduction of objectives as proxies, (iii) avoids the premature convergence to local optima possibly introduced by multi-component fitness functions, and (iv) solves the bootstrap problem exploiting ancillary objectives to guide evolution in the early phases. We present an experimental demonstration of these benefits in three different case studies: maze navigation in a single robot domain, flocking in a swarm robotics con- text, and a strictly collaborative task in collective robotics.
机译:多目标优化在进化机器人技术中的应用正受到越来越多的关注。对文献的调查表明,它为改进高效和自适应机器人系统的自动设计提供了不同的可能性,并指出了针对特定任务和与任务无关的方法(即,是否参考具体方法)的成功演示。设计要解决的问题)。但是,多目标方法相对于单目标方法的优势尚未清楚地阐明和实验证明。本文填补了任务特定方法的空白:从多目标优化的著名结果开始,我们讨论如何解决进化型机器人技术中公认的问题。特别是,我们表明,多目标优化(i)通过探索目标的多个权衡取舍,可以演化出更多不同的行为集;(ii)通过介绍支持期望行为的演变(iii)避免了可能由多分量适应度函数引入的过早收敛到局部最优,以及(iv)利用辅助目标解决了引导问题,以指导早期阶段的发展。我们在三个不同的案例研究中提供了这些好处的实验性演示:在单个机器人域中进行迷宫导航,涌入成群的机器人技术环境以及在集体机器人技术中严格执行协作任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号