首页> 外文OA文献 >Spatially complex localisation after one-twist-per-wave equilibrium in twisted circular rods with initial curvature
【2h】

Spatially complex localisation after one-twist-per-wave equilibrium in twisted circular rods with initial curvature

机译:初始曲率扭曲的圆杆中,每波扭转一圈后,空间复杂的局部化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In experiments on long rubber rods subject to end tension and moment, a one-twist-per-wave deformation is often observed on the fundamental path prior to the onset of localised buckling. An analysis is undertaken here to account for this observed behaviour. First we derive general equilibrium equations using the Cosserat theory, incorporating the effects of non-symmetric cross section, shear derive general equilibrium equations using the Cosserat theory, incorporating the effects of non-symmetric cross section, shear deformation, gravity, and a uniform initial curvature of the unstressed rod. Each of these effects in turn can be expressed as a perturbation of the classical completely integrable Kirchhoff-Love differential equations which are equivalent to those describing a spinning symmetric top. Non-symmetric cross-section was dealt with in earlier papers. Here, after demonstrating that shear deformation alone makes little qualitative difference, the case of initial curvature is examined in some detail. It is shown that the straight configuration of the rod is replaced by a one-twist-per wave equilibrium whose amplitude varies with pre-buckling load. Superimposed on this equilibrium is a localised buckling mode, which can be described as a homoclinic orbit to the new fundamental path. The dependence is measured of the pre-buckled state and critical buckling load on the amount of initial curvature. Numerical techniques are used to explore the multiplicity of localised buckling modes, given that non-zero initial curvature breaks Numerical techniques are used to explore the multiplicity of localised buckling modes, given that non-zero initial curvature breaks the complete integrability of the differential equations, and also one of a pair of reversibilities. Finally, the physical implications of the results are assessed and are shown to match qualitatively what is observed in an experiment.
机译:在承受端部张力和力矩的长橡胶棒上进行的实验中,经常会在局部屈曲发生之前在基本路径上观察到每波一次扭曲。在此进行分析以解释这种观察到的行为。首先,我们使用Cosserat理论导出一般平衡方程,并结合了非对称横截面的影响,并使用Cosserat理论导出了一般平衡方程,并结合了非对称横截面,剪切变形,重力和均匀初始应力的影响。无应力杆的曲率。这些效果中的每一个都可以表示为经典完全可积分的Kirchhoff-Love微分方程的扰动,该微分方程与描述旋转对称顶部的方程等效。较早的论文中讨论了非对称截面。在此,在证明单独的剪切变形几乎没有定性差异之后,将详细研究初始曲率的情况。结果表明,杆的笔直结构被每圈一圈的波浪平衡所代替,其振幅随预屈曲载荷而变化。在此平衡上叠加了局部屈曲模式,可以将其描述为新基本路径的同斜轨道。测量了预屈曲状态和临界屈曲载荷对初始曲率量的依赖性。假设非零初始曲率破坏,则使用数值技术来探索局部屈曲模式的多重性假设非零初始曲率破坏了微分方程的完整可积分性,则使用数值技术来探索局部屈曲模式的多重性,也是一对可逆性中的一个。最后,评估结果的物理含义,并显示出与实验中观察到的定性匹配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号