首页> 外文OA文献 >Closed form solution of Eigen frequency of monopile supported offshore wind turbines in deeper waters incorporating stiffness of substructure and SSI
【2h】

Closed form solution of Eigen frequency of monopile supported offshore wind turbines in deeper waters incorporating stiffness of substructure and SSI

机译:含下部结构刚度和SSI的深海中单桩支撑海上风机本征频率的封闭形式解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Offshore wind turbines (OWTs) are dynamically loaded structures and therefore the estimation of the natural frequency is an important design calculation to avoid resonance and resonance related effects (such as fatigue). Monopiles are currently the most used foundation type and are also being considered in deeper waters (30 m) where a stiff transition piece will join the monopile and the tapered tall tower. While rather computationally expensive, high fidelity finite element analysis can be carried to find the Eigen solutions of the whole system considering soil–structure interaction; a quick hand calculation method is often convenient during the design optimisation stage or conceptual design stage. This paper proposes a simplified methodology to obtain the first natural frequency of the whole system using only limited data on the WTG (Wind Turbine Generator), tower dimensions, monopile dimensions and the ground. The most uncertain component is the ground and is characterised by two parameters: type of ground profile (i.e. soil stiffness variation with depth) and the soil stiffness at one monopile depth below mudline. In this framework, the fixed base natural frequency of the wind turbine is first calculated and is then multiplied by two non-dimensional factors to account for the foundation flexibility (i.e. the effect of soil–structure interaction). The theoretical background behind the model is the Euler–Bernoulli and Timoshenko beam theories where the foundation is idealised by three coupled springs (lateral, rocking and cross-coupling). 10 wind turbines founded in different ground conditions from 10 different wind farms in Europe (e.g. Walney, Gunfleet sand, Burbo Bank, Belwind, Barrow, Kentish flat, Blyth, Lely, Thanet Sand, Irene Vorrink) have been analysed and the results compared with the measured natural frequencies. The results show good accuracy (errors below 3.5%). A step by step sample calculation is also shown for practical use of the proposed methodology.
机译:海上风力涡轮机(OWT)是动态加载的结构,因此自然频率的估计是避免共振和与共振相关的影响(例如疲劳)的重要设计计算。目前,单桩是最常用的地基类型,也正在考虑在较深的水域(> 30 m)中使用刚性过渡件连接单桩和锥形高塔。考虑到土与结构的相互作用,尽管计算量很大,但是可以进行高保真度有限元分析来找到整个系统的本征解。在设计优化阶段或概念设计阶段,快速手动计算方法通常很方便。本文提出了一种简化的方法,仅使用WTG(风力涡轮发电机),塔架尺寸,单桩尺寸和地面上的有限数据即可获得整个系统的第一固有频率。最不确定的部分是地面,其特征在于两个参数:地面轮廓的类型(即土壤刚度随深度的变化)和泥线以下一个单桩深度处的土壤刚度。在此框架中,首先计算出风力涡轮机的固定基准自然频率,然后将其乘以两个无因次因子以说明基础的灵活性(即土壤与结构相互作用的影响)。该模型的理论背景是Euler–Bernoulli和Timoshenko梁理论,其中的基础是通过三个耦合弹簧(横向,摇摆和交叉耦合)理想化的。分析了来自欧洲10个不同风电场(例如Walney,Gunfleet沙,Burbo Bank,Belwind,Barrow,Kentish Flat,Blyth,Lely,Thanet沙,Irene Vorrink)在不同地面条件下建立的10台风力涡轮机,并将结果与测量的固有频率。结果显示出良好的准确性(误差低于3.5%)。还显示了针对所建议方法的实际使用的逐步样本计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号