首页> 外文OA文献 >A supervised hierarchical segmentation of remote-sensing images using a committee of multi-scale convolutional neural networks
【2h】

A supervised hierarchical segmentation of remote-sensing images using a committee of multi-scale convolutional neural networks

机译:使用多尺度卷积神经网络委员会对遥感影像进行监督分层分割

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a supervised, hierarchical remote-sensing image segmentation technique using a committee of multi-scale convolutional neural networks. With existing techniques, segmentation is achieved through fine-tuning a set of predefined feature detectors. However, such a solution is not robust since the introduction of new sensors or applications would require novel features and techniques to be developed. Conversely, the proposed method achieves segmentation through a set of learnt feature detectors. In order to learn feature detectors, the proposed method exploits a committee of convolutional neural networks that perform multi-scale analysis on each band in order to derive individual confidence maps on region boundaries. Confidence maps are then inter-fused in order to produce a fused confidence map. Furthermore, the fused map is intra-fused using a morphological scheme into a hierarchical segmentation map. The proposed method is quantitatively compared to baseline techniques on a publicly available data set. The results presented in this paper highlight the improved accuracy of the proposed method.
机译:本文提出了一种使用多尺度卷积神经网络委员会进行监督的,分层的遥感图像分割技术。使用现有技术,可以通过微调一组预定义的特征检测器来实现分割。但是,由于引入新的传感器或应用将需要开发新颖的特征和技术,因此这种解决方案并不可靠。相反,提出的方法通过一组学习的特征检测器实现分割。为了学习特征检测器,提出的方法利用了一个卷积神经网络委员会,该委员会在每个频带上执行多尺度分析,以便得出区域边界上的各个置信度图。然后将置信度图相互融合,以生成融合的置信度图。此外,使用形态学方案将融合图内融合到分层分割图中。在公开可用的数据集上,将提出的方法与基线技术进行定量比较。本文提出的结果强调了所提方法的改进精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号