首页> 外文OA文献 >Bayesian Active Learning with Evidence-Based Instance Selection
【2h】

Bayesian Active Learning with Evidence-Based Instance Selection

机译:贝叶斯主动学习与基于证据的实例选择

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

There are at least two major challenges for machine learning when performing activity recognition in the smart-home setting. Firstly, the deployment context may be very different to the context in which learning occurs, due to both individual differences in typical activity patterns and different house and sensor layouts. Secondly, accurate labelling of training data is an extremely time-consuming process, and the resulting labels are potentially noisy and error-prone. We propose that these challenges are best solved by combining transfer learning and active learning, and argue that hierarchical Bayesian methods are particularly well suited to problems of this nature. We introduce a new active learning method that is based on on Bayesian model selection, and hence fits more concomitantly with the Bayesian framework than previous decision theoretic approaches, and is able to cope with situations that the simple but na¨ıve method of uncertainty sampling cannot. These initial results are promising and show the applicability of Bayesian model selection for active learning. We provide some experimental results combining two publicly available activity recognition from accelerometry data-sets, where we transfer from one data-set to another before performing active learning. This effectively utilises existing models to new domains where the parameters may be adapted to the new context if required. Here the results demonstrate that transfer learning is effective , and that the proposed evidence-based active selection method can be more effective than baseline methods for the subsequent active learning.
机译:在智能家居环境中执行活动识别时,机器学习至少有两个主要挑战。首先,由于典型活动模式的个体差异以及不同的房屋和传感器布局,部署环境可能与发生学习的环境非常不同。其次,对训练数据进行准确标记是一个非常耗时的过程,并且所产生的标记可能会产生噪音并且容易出错。我们建议通过结合转移学习和主动学习来最好地解决这些挑战,并提出层次贝叶斯方法特别适合这种性质的问题。我们介绍了一种基于贝叶斯模型选择的新型主动学习方法,因此比以前的决策理论方法更适合贝叶斯框架,并且能够应对不确定性抽样的简单但幼稚的方法无法解决的情况。这些初步结果令人鼓舞,并表明贝叶斯模型选择对于主动学习的适用性。我们提供了一些实验结果,结合了来自加速度计数据集的两个公开可用的活动识别,在执行主动学习之前,我们从一个数据集转移到另一个数据集。这有效地将现有模型利用到新域中,如果需要,参数可以适应新上下文。在这里,结果证明了转移学习是有效的,并且对于后续的主动学习,所提出的基于证据的主动选择方法比基线方法更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号