首页> 外文OA文献 >Visual salience and priority estimation for locomotion using a deep convolutional neural network
【2h】

Visual salience and priority estimation for locomotion using a deep convolutional neural network

机译:使用深度卷积神经网络的运动的视觉显着性和优先级估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a novel method of salience and priority estimation for the human visual system during locomotion. This visual information contains dynamic content derived from a moving viewpoint. The priority map, ranking key areas on the image, is created from probabilities of gaze fixations, merged from bottom-up features and top-down control on the locomotion. Two deep convolutional neural networks (CNNs), inspired by models of the primate visual system, are employed to capture local salience features and compute probabilities. The first network operates through the foveal and peripheral areas around the eye positions. The second network obtains the importance of fixated points that have long durations or multiple visits, of which such areas need more times to process or to recheck to ensure smooth locomotion. The results show that our proposed method outperforms the state-of-the-art by up to 30 %, computed from average of four well known metrics for saliency estimation.
机译:本文提出了一种在运动过程中对人类视觉系统进行显着性和优先级估计的新方法。该视觉信息包含从移动视点派生的动态内容。优先级图是根据凝视注视的概率创建的,对图像上的关键区域进行排名,并根据自下而上的功能和自上而下的运动控制进行合并。受灵长类动物视觉系统模型的启发,两个深层卷积神经网络(CNN)用于捕获局部显着特征并计算概率。第一网络通过眼睛位置周围的中央凹和外围区域进行操作。第二个网络获得了持续时间长或多次访问的固定点的重要性,其中固定区域需要更多时间进行处理或重新检查以确保运动平稳。结果表明,我们提出的方法比最新技术高出30%,这是根据四个知名度显着性指标的平均值计算得出的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号